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Abstract
Studies on human mobility have demonstrated that transi-
tions between important locations are highly regular, and
that in overall, people spend the majority of their time in a
small set of important locations. However, what currently is
not known is how regular the movements leading from one
location to another are, i.e., how regular is the route mobility
of individuals. The present paper contributes by conducting
the first ever empirical study on regularity of route regu-
larity. We demonstrate that routes indeed contain a high
degree of regularity and that the uncertainty associated with
a route is concentrated along a small set of so-called fork
points. Accordingly, our results suggest that routes can be
encoded using a combination of sub-segments with high
regularity, and a set of fork points that serve as transition
points for the sub-segments. We carry out our analysis us-
ing the CabSpotting dataset, which contains mobility traces
from 538 cabs in San Francisco metropolitan area collected
during one month period.
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Introduction
Understanding and characterizing human mobility is a fun-
damental scientific challenge that has relevance to numer-
ous scientific domains, ranging from urban planning to epi-
demiology [5], and a wide range of innovative mobile appli-
cations and services [6, 12, 15]. Previous research on un-
derstanding human mobility has predominantly focused on
transitions from one important location (or place) to another,
and shown these to be highly regular (see Related Work).
However, what is not known is how regular the movements
between these locations are, i.e., how regular human move-
ment trajectories are.

The present paper contributes by presenting the first ever
study on the regularity of route mobility. Our analysis has
been carried out using the Cab Spotting dataset [11], which
contains the GPS location of 538 cabs from a one month
period in San Francisco. Human mobility is necessarily con-
strained by road network and urban infrastructure, mak-
ing the movements of (occupied) cabs a feasible proxy for
human mobility. As our first technical contribution, we de-
velop a principled methodology for quantifying the entropy
of movement trajectories for any given spatial and temporal
resolution. The idea is to convert trajectories into Markov
chains and quantify their regularity using Markov trajectory
entropy [4]. We use our framework to analyze overall regu-
larity of trajectories and demonstrate that, as a whole, tra-
jectories appear irregular and difficult to predict. However,
as part of our analysis we examine the uncertainty associ-
ated with different locations along the trajectory and demon-
strate that most of the uncertainty is concentrated along a
small set of so-called fork points. Motivated by this result,
as our second technical contribution, we develop an algo-
rithm for segmenting trajectories into sub-segments that
are highly regular. Using these sub-segments, the overall
trajectory can be encoded efficiently and compactly.

Related Work
Previous work on characterizing the regularity of human
mobility has mainly focused on (i) characterizing regular-
ity of transitions between frequently visited locations and
on (ii) modeling displacements in mobility. In terms of for-
mer, Song et al. [14] used cell tower information to char-
acterize transitions and derived an upper bound of 93%
for human mobility. Lin et al. [8] repeated the study using
GPS data and found 90% potential predictability for building
level granularity. Lu et al. [9] studied regularity of mobility
patterns in Cote d’Ivoire. Similarly to the other studies, the
authors found the theoretical upper bound on predictabil-
ity to be close to 90%. Lin et al. also demonstrated that
mobility predictors can reach accuracy close to the upper
bound. Smith et al. [13] refined the limit by considering a
more realistic transition model for human mobility, demon-
strating that the upper bound of predictability is likely to be
10− 20% lower than shown by other studies. De Domenico
et al. [3] demonstrated a relationship between social inter-
actions and mobility, showing that higher predictability can
be achieved when also the social relationships of users are
taken into consideration.

Regarding displacements, travel distances have been shown
to follow a so-called Lévy flight model [2, 5]. According to
this model, human mobility consists of many short flights
which are interleaved with some longer distance flights, and
the distances of the flights follow power-law distribution.
Zhao et al. [16] show how the Lévy flight model can be de-
composed into a mixture of log-normal distributions when
information about transportation modalities are available.

Data Description
We have performed our analysis using the Cab Spotting
dataset [11], which contains the GPS locations of 536 cabs
sampled during one month (May-June 2008) in San Fran-



cisco. In total, the data contains over 11 million GPS mea-
surements. The sampling rate of the GPS receiver varies in
the data. For our analysis, we restrict to samples containing
at most 70 seconds between them. The data contains also
an occupancy indicator for each GPS measurement, which
we use to identify start and end points of a trajectory.

Figure 1: A movement trajectory
discretized over a 2-D coordination
system

To quantify the regularity of trajectories, we discretize the
data by mapping each GPS measurement into a discrete
grid index. We perform the mapping by converting each
latitude, longitude pair into a cell index on a d × d sized
grid; see Nurmi et al. [10] for details of the conversion. Dis-
cretizing the measurements is essential for computational
tractability, and helps to overcome inaccuracies in location
measurements, e.g., due to driving on a different lane or
due to inaccurate GPS fixes. In our analysis we consider
d = 200m, which was chosen as a trade-off between loca-
tion accuracy and computational requirements. Choosing
lower values for d results in trajectories with higher resolu-
tion, but in the case of the CabSpotting dataset such values
will lead in inaccurate trajectories with many inherent gaps.
For the Cab Spotting data this corresponds to a model with
120 × 100 grid cells. Once the points have been converted
into grid indices, we represent each trajectory as a string
containing the cell indices of the location measurements.
Formally, let s and d denote the source and destinations
of a trip, the trajectory between s and d is then defined as
Ts,d = c1, ..., cn; see Figure 1 for an illustration.

The sparse sampling rate of the GPS receiver can result in
trips along the same route generating different trajectories
due to gaps in the measurements. To mitigate this issue
and to alleviate the effect of gaps in our regularity analy-
sis, we interpolate the measurements to have a constant
10 second sampling interval. We also prune the set of tra-
jectories by removing trips that visit only a small number

of cells or that have long update rates. Specifically, we re-
move (i) all trajectories with a duration less than 5 minutes
or longer than 2 hours as these are likely to be erroneous;
(ii) contain update rates higher than 70 seconds as these
are likely to contain inaccuracies due to GPS unavailability
or GPS receiver failure; (iii) have measurements from fewer
than four grid cells. In total, this results in 286, 629 distinct
trajectories for our analysis.

Quantifying Trajectory Regularity
We quantify regularity of trajectories by modeling them as
(first order) Markov chains. Accordingly, each cell along
a trajectory corresponds to a state in a Markov chain and
movements from one cell to another correspond to transi-
tions between states. Given the collection of all trajectories
T , we create a Markov chainM(T ) by constructing a tran-
sition probability matrix P = pi,j where pi,j denotes the
probability of observing a transition between grid cells i and
j. Once the Markov chain has been constructed, we can
analyze regularity of trajectories by examining the random-
ness of the trajectories between each source and desti-
nation pair. Any route between an arbitrary source s and
destination t can now be seen as a realization of a Markov
trajectory between the states corresponding to s and t, and
the regularity of the route choices can be examined by ana-
lyzing the entropy of the resulting Markov trajectories.

Calculating Entropy of Markov Trajectories
To calculate the entropy of Markov trajectories, we construct
a trajectory entropy matrix H that encodes the randomness
between each possible source and destination pair. Follow-
ing Ekroot [4], the following closed form expression can be
used to construct H :

H = K − K̃ +H∆. (1)



The matrix H∆ is a diagonal matrix with entries (H∆)i,i =
H(χ)
µi·

where H(χ) is the entropy rate of a state. The en-
tropy rate of a state, in turn, is given by

H(χ) = −Σi,jµiPi,j logPi,j (2)

where µ is the stationary distribution of the Markov chain
M(T ) which can be obtained through eigenvalue analysis.
The matrix K in Equation 1 is given by

(I − P +A)−1(H∗ −H∆) (3)

where K̃ is a matrix in which the ijth element K̃ equals the
diagonal element Kj,j of K; A is the matrix of stationary
probabilities with entries Ai,j = µj ; H∗

i,j = H(Pi·) =
−ΣkPi,klogPi,k is the matrix of single-step entropies.

Figure 2: State transition diagram
for a 5-state Markov Chain

To illustrate the concept of entropy of Markov trajectories,
consider the Markov chain illustrated in Figure 2, which re-
sults in the following probability transition matrix P :

P =


0 0.7 0.3 0 0
0 0 0 0 1
0 0.2 0 0.8 0
0 0 0 0 1

0.6 0 0 0.4 0


By using Equation 1, we can obtain the following matrix of
Markov trajectory entropies:

H =


2.7161 1.9555 6.7135 3.3746 1.0978
1.6182 3.5738 8.3318 2.9957 0
2.3401 3.5810 9.0537 1.3210 0.72192
1.6182 3.5738 8.3318 2.9957 0
1.6182 3.5738 8.3318 2.9957 1.6296


From the matrix we can observe, e.g., that the entropy of
trajectories between cells 1 and 5 is 1.6296 bits, while the
entropy of deterministic trajectories, T4,5 and T2,5, is equal
to zero, i.e., they contain no randomness.
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Figure 3: Histogram of trajectory entropies.

Regularity of Trajectories
We first consider the overall regularity of movement trajec-
tories, which is illustrated in Figure 3. From the figure we
can observe that generally the entropy of the trajectories
contains little variation, with the entropy of most trajecto-
ries being between 15 and 35. These values, however, are
difficult to interpret or to relate to predictability. To obtain
an alternative view on the regularity, Figure 4 contains a
heatmap of the entropy rates (see Eq. 2) of the different
states / grid cells. From the plot we can observe that the
highest uncertainties are associated with the main roads
along the downtown areas, however, generally all states
tend to have relatively high uncertainty. Thus, state-by-state
predictions are likely to result in very poor prediction perfor-
mance, suggesting that next cell based predictors are not
sufficient for predicting human movement trajectories.



Figure 4: Overall entropy of trajectories

Figure 5: Six popular areas among
tourist, each containing several
attractions according to Tripadvisor
top visited locations.

Distribution of Entropy within a Trajectory
To further illustrate the characteristics of route regularity, we
consider as an example six popular tourist attractions (ac-
cording to TripAdvisor.com) in San Francisco; see Figure 5.
We select the most popular location as the source of our
trajectories and consider the other five as our destinations.
To compare the entropies of the trajectories, we interpolate
the cell entropies along each trajectory to have the same
length and we align the cell trajectories of the different tra-
jectories. This results in a time series representation of the
evolution of entropy along each trajectory. The resulting
entropies are shown in Figure 6.

From the results we can observe that several cells have
very low entropy, suggesting movements within them are
highly predictable. Such cells provide little information about

Figure 6: Cell local entropies along five different trajectories
chosen between the a specific source and five popular
destinations based on the popular tourist attractions. The average
value of the state entropies are shown with a black line.

movements within the trajectory, and a more compact rep-
resentation of the trajectory could be obtained by excluding
such cells. We can also observe that a small number of
grid cells have significantly higher entropy than other cells
along the trajectory, appearing as peaks in the resulting
plot. These points essentially correspond to decision points
along a trajectory. We refer to these points as fork points.

Trajectory Segmentation
The regularity analysis revealed that most of the uncer-
tainty associated with route choices is concentrated along
a small set of fork points. Each fork point can be effectively
understood as a point that segments the overall trajectory
into sub-segments that are to a high degree predictable. To
identify such point automatically, as the second contribution
of the paper we propose a novel online algorithm for detect-
ing fork points from streams of location measurements.



Algorithm 1 ForkPointDetection

1: stateEntropyArray ←
state entropy of the cells based on history

2: µ← mean(stateEntropiesWindow)
3: σ ← sd(stateEntropiesWindow)
4: z ← thresholdValue
5: window ← emptylist
6: forkPoints← emptylist
7: while There’s a new cell as cell do:
8: stateEntropyArray ←
stateEtnropyArray.append(entropy(cell))

9: µ← mean(stateEntropiesWindow)
10: σ ← sd(stateEntropiesWindow)
11: if entropy(cell)−µ

σ ≥ z then
12: window ← window.append(entropy(cell)).
13: else
14: if window is not empty then
15: forkPoints ←

forkPoints.append(max(window))
16: window ← emptylist

17: return forkPoints

Our algorithm for detecting fork points is summarized in
Algorithm 1. The core idea is to continuously monitor the
entropy rate (see Equation 2) of grid cells that are encoun-
tered, and to return cells that have a significantly higher
entropy rate than other recently encountered cells as the
fork points. To accomplish this, two challenges need to be
solved: (i) we need to be able to estimate the entropy rate
of each grid cell with sufficient accuracy in an online fash-
ion; and (ii) we need to have a mechanism for determining
significant deviations in entropy rates in a robust fashion.

To estimate the entropy rate of grid cells, we maintain an
online estimate of the probability transition matrix P of the

Figure 7: Detected fork-points of an example trajectory where the
threshold is shown with the black line.

underlying Markov chain. This can be simply accomplished
by keeping a running count of the number of transitions
between grid cells. Note that the interpolation of the mea-
surements ensures that subsequent measurements are in
neighboring cells and consequently we only need to store
eight values per cell. These values can even be maintained
on mobile devices as the number of cells encountered by
an individual is typically relatively small. To calculate the
entropy rate, we need to solve the stationary distribution µ
of P , which can be done either on demand or periodically
when the matrix P changes significantly.

We detect significant deviations in the entropy rates using
a statistical significance test. Specifically, we calculate run-
ning estimates of the mean and standard deviation of the
overall entropy rate of a trajectory and derive a z-score for
each cell that is encountered. Whenever the z-score of a
cell exceeds a threshold of statistical significance, we initi-
ate peak detection and buffer measurements until the score
of the cell falls below the initial threshold. The cell with the



Figure 8: The number of fork-points per trajectory based on the
San Francisco cab trajectory traces

maximal z-score is then selected as the fork point. Figure 7
demonstrates our fork-point detection algorithm over an ex-
ample trajectories. The fork-points are shown as blue dots
and the black line is is our threshold.

After detecting the fork-points in each trajectory it is pos-
sible to compress and encode the trajectory with its fork-
points. To illustrate the benefits of this approach, we se-
lected the most repeated location in the cab spotting dataset
as the source of the trips and extracted all trajectories.
A histogram of the compression rate of the trajectories is
shown in Figure 8, demonstrating that most of the time even
70% savings can be achieved in the trajectory representa-
tion. This can be used also for other purposes, e.g., trajec-
tory tracking systems such as EnTracked [7, 1] can use fork
points to schedule location updates in order to minimize
overall energy consumption of the tracking.

Discussion and Summary
The fact that the majority of a trajectory is regular is inter-
esting for several reasons. On a system level, location and
trajectory tracking solutions, such as EnTracked [7, 1], can
reduce the sampling rate of GPS and other energy-heavy
sensors during segments with high predictability. As we
have shown, these are typically the longest segments in a
trajectory, suggesting that significant reductions in energy
consumption can be achieved.

We investigated regularity using a uniform spatial resolu-
tion. A limitation with this approach is that factors such as
multiple lanes or large traffic junctions can affect the regu-
larity results as the locations of the users fall to neighboring
cells, decreasing the overall regularity. In addition, we only
considered trajectories from cabs. While cab traces are a
feasible proxy for human mobility, cab mobility may have
certain properties that can differ from, e.g., journeys by pri-
vate cars. We plan to further analyze this in our future work.
We also plan to investigate how information about the traffic
network can be used to refine our regularity results.
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