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Abstract

We present a systematic study and optimization of crowd
monitoring methods based on tracking consumer devices
with activated WiFi/Bluetooth interfaces using stationary
scanners with directional antennas. To this end we have
recorded a large scale, real life data set from a car manu-
facturers exhibition at the Frankfurt Motor Show IAA that
includes data from 31 directional scanners covering a
total area of 6000m? running for 13 business days and
providing nearly 90 million data points from a total of over
300000 unigue mobile devices. For seven of the 13 days
video ground truth has been recorded and extensively
annotated. Questions that we addressed include the map-
ping from the number of detected devices to the number
of people, the ability to generalize the calibration from a
small number of ground truth points recorded on one day
to other days and the ability to localize individuals in differ-
ent conditions. Our methods show less than 20% error for
the crowd density and less than 8 m localization error for
individuals.

Author Keywords
crowd density estimation;sensing unmodified smart-
phones;WiFi probing;crowd density heat map



Figure 1: Symbolic sensor setup
on the ceiling where the sensors
were mounted together with
lighting material. The sensors
were equipped with directional
antennas with free line of sight
towards the visitors.
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Introduction

Analysis of RF signals is a well known technique for hu-
man activity monitoring. In general we distinguish three
types of approaches (which may be used in isolation or
in combination). First are systems where user’s mobile
devices scan the environment for signals from station-
ary beacons such as for example WiFi access points or
Bluetooth iBeacons. This is a basis for a whole range

of indoor positioning systems (see related work). Sec-
ond are systems where users mobile devices are used
to detect the presence of other mobile devices. This ap-
proach has been widely used especially for the tracing of
social interactions. Third, we have stationary scanners
detecting, counting, and tracking mobile beacons car-
ried by the users. Such mobile beacons can either be
dedicated devices (e.g. www.gimbal.com) or the WiFi or
Bluetooth interfaces of standard mobile devices such as
smartphones or smartwatches. In this paper we focus on
the later. Specifically we use carefully placed stationary
WiFi and Bluetooth scanners with highly directional anten-
nas to monitor crowd conditions during large scale public
events (see Figure 1). The advantage of the approach is
that the crowd can be monitored without the need for user
cooperation in the form of installing and starting an App
or carrying a dedicated beacon. As outlined in the related
work section below the general feasibility of the approach
above has already been demonstrated in individual ap-
plications including some crowd density measurement
(see related work). The contribution of this paper beyond
such work is a systematic study and optimization of crowd
monitoring methods using stationary scanners to track
consumer devices with activated WiFi/Bluetooth inter-

faces on a large, real life data set that includes extensive
video ground truth.

1. We have recorded a large scale, real life data set
from a car manufacturers exhibition at the Frankfurt
Motor Show IAA. The data set is based on 31 direc-
tional scanners covering 9 ‘zones of interest’ and a
total area of 6000m°. The scanners were running
for 13 business days, providing nearly 90 million
data points from a total of over 300000 unique mo-
bile devices. (see Table 1). For seven of the 13
days video ground truth has been recorded and
extensively annotated.

2. We have used the data set to systematically ana-
lyze the limits and potential problems associated
with monitoring crowd density and crowd flow in real
world environments. Questions that we addressed
include the mapping from the number of detected
devices to the number of people (including the abil-
ity to generalize from a small number of ground
truth points recorded on one day to other days), the
ability to localize individuals in different conditions
and the ability to reconstruct paths in different condi-
tions.

3. We have developed and evaluated methods for
crowd density estimation and visualization that
build on the insights from the analysis above. See
Figure 2 for an overview.

Related Work

The work most similar to ours is done by Fukuzaki et al.
[9] where they collected WiFi probe requests from 20
sensors distributed widely in a shopping mall. They used
motion sensors at entrances for retrieving a calibration
factor between 2.8 and 3.4 with an average error of 30%.
However there is no mention of the expected accuracy
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of the automatic ground truth and how the motion sensor
differentiated between inbound and outbound visitors for
a correct count. Similar research was done by Schauer
et al. [17] by placing Wi-Fi probe sensors at the secu-

rity check within the Munich airport. They used boarding
pass scan numbers as ground truth for the number of
people. The accuracy of both crowd density and pedes-
trian flow estimations was evaluated. A correlation of 0.75
is presented, however the paper does not focus on an
evaluation of a factor between ground truth and WiFi mea-
surements. The use of WiFi probes to track pedestrians
with multiple sparsely distributed sensors is mentioned by
related work [4, 8, 18, 16], however without ground truth
evaluation.

In summary while the general feasibility has been demon-
strated before, our work significantly goes beyond previ-
ous research with respect to a systematic study of various
effects and comprehensive analysis of various crowd
aspects in a large data set within a complex real world en-
vironment. Further away from our work using WiFi probes
multiple threads of research aim to analyze social relation-
ships [2], to track people within a city [14, 1] or to estimate
waiting times in queues [19]. Aligned to WiFi sensing pre-
vious research concentrated in using Bluetooth scans to
uncover complex social systems [6, 5], to analyze peo-
ples behavior [12] and crowd sensing [15, 20, 13, 11, 10].
Along other research lines crowd sensing is accomplished
with active user participation [3, 21]. The systems widely
rely on GPS fixes collected by a smartphone application
and sending the data to a server. However the disadvan-
tage lies in the difficulty of recruiting participants to con-
tinuously support crowd sensing. A long research history
can be assigned to video surveillance based crowd de-
tection [7] . However with continuous video based crowd
sensing privacy concerns arise as well as standard is-

sues with computer vision algorithms (occlusion of people,
lighting conditions) occur.
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Figure 3: Histogram of the number of WiFi probes during a visit.
In total 331369 distinct devices were sending WiFi probes.

We introduce a comprehensive data set (‘IAA data set’)
covering 13 days during the ‘Internationale Automobi-
lausstellung 2015’ in Frankfurt, Germany. We cooper-
ated with a car manufacturer to have setup our sensors
at a their booth. With 31 sensors which were mounted
near the ceiling 1, visitors smartphones were detected
through their WiFi interface sending WiFi probe signals.
WiFi probes were continuously recorded during the day
(9 hours) while visitors could freely move within the area,
as well as during the remaining time. In total 209224745
WiFi probes were collected whereof 124276238 were
dropped because they were coming from visitors outside
or from stationary devices. In fact 84°948°507 WiFi probes
are collected from visitors and 331’369 distinct visitors
detected (see 1 and see Figure 3 for the distribution of
scans). Each of the data set entries consists of times-
tamp, sensor identifier, visitor device vendor, anonymized
MAC address and RSSI value. Concentrating the col-
lected data we collected ground truth during seven days
of the experiment. We managed to mount a single video
camera with a diagonal view from the outside of the booth.
It was mounted on an object with a height of 8 meters.



Event Duration  Sensors

WiFi Probes Distinct Devices

IAA exhibition 13 days 31

84'948°507 331’369

Table 1: Statistics about performed WiFi probe based crowd-density experiments.

The camera setup was made every day with the same
view in a wide angle mode, thus covering almost the
whole exhibition area. The video camera recorded video
footage continuously. The video footage was annotate off-
line in a labor intensive task by students. 71 images were
uniformly selected with about one hour of time difference.
Each of these image were annotated in a labor-intensive
task by students. All people on the booth have been an-
notated by a special pixel on a separate layer. Up to 1200
annotations were performed per image. In total: 42444
annotations on all 71 ground truth images. In addition we
collected ground truth to evaluate the location accuracy
by manually collecting location and signal measurements.

Localization

To estimate the localized crowd density visitors need to be
localized. The location can be determined on two accu-
racy levels. Either by assigning the visitor location to the
best matching sensor location or by assigning the visitor
location to a coordinate. Given N scanners positions and
a measurement vector X which includes M RSSI scans x;;
from scanner i at time t, the goal of the localization algo-
rithm is to estimate the coordinate of the mobile device
whenever possible. The naive approach of localizing a
visitor would be to use every WiFi probe obtained from
the visitor at the current time and calculate the location.
But signal variations occur. Either because of multi-path
propagation and change of signal shielding or by quick
movements of the visitors passing sensors quickly. A loca-
tion is only estimated if the visitor is classified as ‘stand-

ing’ which is derived from a verifiable repeated signal.
‘Standing’ means there is a significant number of WiFi
probes from surrounding sensors which do not change
over time (see localization algorithm description for more
details). There is no general rule for which visitors are
localizable for what percentage of their visit. Short visitors
are either not localizable at all or localizable during their
short visit. We compare two localization algorithms and
evaluate them in context of WiFi probe based signal mea-
surements (with the property of a low number of samples
per device).

Location estimation based on RSSI multilateration:

The localization method is based on sliding windows with
a step-size of ten seconds and a window size of two min-
utes. For each window, the WiFi probes per mobile device
are filtered as follows. The top five highest RSSI values
and the corresponding sensors are selected. Multi-path
effects and the way how the visitor holds the smartphone
affect the received signals and can lead to noisy signals.
To be more robust against these noisy signals, the spatial
scanner setup is additionally taken into consideration. We
exploit the local density information of scanner positions
belonging to the scans in the window and compute the
kNN-Global anomaly score with k=2. This density based
metric identifies single scans which are further away from
scans that can be locally clustered. All scans having a
score that deviates more than 50 percent from the mean
distance will be rejected. For each of three consecutive
sliding windows, the filtered scans are used to compute
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Figure 4: Localization evaluation
of a mobile hand-held device
(upper image) and mobile device
placed in the trousers pocket
(lower image). The x-axis
describes the offset of the
calculated position to the ground
truth position (meters) and the
y-axis describes the percentage
of positions having an offset of at
most x meters. Three sessions
(blue, green, red) were performed
synchronously with hand-held and
pocket devices to collect ground
truth information. 90% are
localized with a maximum of 9m
(hand-held) respectively 11m
(pocket) away from the true
location.

the mean location weighted by the RSSI value. If the max-
imum pairwise distance between the three estimates is
under a threshold, we classify the window as standing
and therefore as a valid location not being influenced by
a visitor passing by. As a consequence of relying on the
scanner positions for computing the weighted mean of
scans, our approach has the tendency to estimate the lo-
cation towards the center of the area: for border locations
of the booth, the scans are only collected from scanners
on the inside of the booth but not outside the booth. The
estimation is therefore strongly biased towards the center
of the area. To circumvent this problem, we apply an addi-
tional border correction. The correction method is applied
if the scan with relatively highest RSSI value within the
window belongs to one of the border scanners. We com-
pute (1) the geometric mean of the scanners for all scans
and (2) the weighted mean using the RSSI values. For
the two estimations the distances towards the scanner
with the highest RSSI value are calculated. If the distance
to the scanner is closer to the weighted mean than from
the geometric mean, we correct the weighted estimate
with an additional bias. As correction bias we use the vec-
tor from the geometric mean to the weighted mean scaled
by 0.5 and add it to the location estimate of the weighted
result.

Location estimation based on crowd-sourced RSSI fingerprint-
ing:

The idea of creating crowd-sourced RSSI fingerprint

maps is to enhance locations of devices with a low WiFi
probe frequency by learning statistical RSSI distributions
from mobile devices which are reachable by many sur-
rounding sensors. Instead of using the absolute RSSI
values (works comparing RSSI values for one device be-
tween multiple sensors) for computing a weighted mean,

we normalize the RSSI values and use the fingerprint

maps of those scanners contained within the sliding win-
dow. From the maps we take the regions which represent
the exact or higher normalized RSSI value and compute
the overlap or regions among all relevant maps. We do

a sampling without replacement from regions with the
highest values and compute the mean location from the
samples. Generating fingerprinting maps for later lookup:
For each scanner, the according RSSI values follow a nor-
mal distribution. We assume that the best 10% originate
from locations under the scanner. Ten percent of the high-
est RSSl-values and not belonging to stationary devices
are selected. With this selection process we extracted
7.6 Million scans for all 31 scanners. Due to the large
number of scans, we assume to achieve some robustness
towards noisy signals. For each selected device scan at
timestamp t, we construct a window centered at t with
length of 30 seconds and select all scans seen from other
scanners for that device in the window. We normalize the
RSSI values by the meximum RSSI value for the device to
be independent of absolute RSSI values. All normalized
scans seen by other scanners are averaged. For creating
the map we set the normalized values for the correspond-
ing scanner position and interpolate for positions between
scanners.

Evaluation of localization methods based on collected ground
truth paths:

We consider shielded mobile devices and unshielded
mobile devices. Shielded mobile device have a shorter
signal range and more noisy RSSI measurements. We
consider the typical places where people are placing
smartphones. Usually carrying it in their trousers front or
back pocket or a in a bag (shielded) or holding it in their
hands to i.e. take a picture (unshielded). We developed a
mobile ground truth application to easily record the loca-
tion of the test subject. We equipped our subject with two



Absolute Percentage

Visitors with

WiFi probes 331369

Localizable visitors 301038 90.8%
Localizable visitors 284940 86.0%
with path

Localizable visitors

without path 16098 49%

Table 2: Number of visitors which
(a) remain from the filtering step
or (b) having locations or (c)
having locations and a path. A
path is a sequence of locations
with a diameter larger than

1 meter.

Figure 5: The connection
between the number of people
retrieved from ground truth and
the number of distinct WiFi
devices. In average the number of
discovered devices has to be
multiplied by 1.5. The factor
varies between 1.0 and 2.6 with
an average value of 1.5.

phones. One in the trousers front pocket and one holding
naturally like while reading a message. To evaluate our
localization approaches with ground truth data the subject
stayed with two smartphones at 63 randomly selected
different locations covering five minutes at each location.
From the 63 locations, 38 are positioned directly under
the scanners, the remaining 25 locations are between
the scanner positions. We collected multiple sessions of
series of locations that as ground truth for evaluating the
methods. The RSSI multilateration localization method
has a mean error of 4.5m and the crowd-sourced RSSI
fingerprinting location method has a mean error of 5.6m.
This means the more simple first method outperforms the
crowd-sourced RSSI fingerprinting method. Since a WiFi
device is shielded differently based on the position within
the body area, we evaluated the localization with a mobile
hand-held device (Figure 4 upper image) and mobile de-
vice placed in the trousers pocket (Figure 4 lower image).
The x-axis describes the offset of the calculated posi-
tion to the ground truth position (meters) and the y-axis
describes the percentage of positions having an offset

of at most x meters. Three sessions (blue, green, red)
were performed synchronously with hand-held and pocket
devices to collect ground truth information. 90% are local-
ized with a maximum of 9m (hand-held) respectively 11m
(pocket) away from the true location.

Filtering

During the total exhibition duration we scanned 987681
unique devices. We applied the following filtering crite-
ria to select the relevant devices representing the crowd.
Other devices are ignored. WiFi probes can be received
from mobile visitor devices and stationary devices (i.e.
laptops,tablet computers used as product displays, WiFi
enabled machines). The WiFi probe does not tell any-
thing about the device properties. Properties need to be

extracted by analyzing the presence over time. A device
is categorized as stationary devices when it is continu-
ously detectable before, and during the exhibition hours.
A devices is categorized as out of bounds when it is

not detected by a sensor within the center of the area

at any time. Obviously the sensors also detect mobile
devices from other regions within the hall, as it is not pos-
sible to setup an electro-magnetic (WiFi absorbing) shield
around the area of interest. The area of interest which
we covered with WiFi-scanners accounted for half of the
exhibition floor, having one side open to the other half.
We grouped scanners into six rows in parallel. Visitors
standing not within the area of interest should have many
scans from the boundary scanner rows compared to inner
scanners. For each visitor we compute the distribution

of scans among the six scanner rows and cluster visitors
based on a similar scanning pattern. With hierarchical
clustering we selected two clusters: devices within the
boundary and devices outside boundary.

Crowd Density Estimation

Related work lacks on information about the performance
of crowd density estimation based on WiFi probes. We
performed our experiment to fill this gap and (1) present
the ground truth used for the performance evaluation and
(2) present the connection between the number of people
retrieved from ground truth and the number of distinct
WiFi devices (3) evaluate the performance depending

on all or only localizable devices and (4) evaluate the
performance depending on the number of calibration
points. We can distinguish between two device groups.
Devices fuzzily known to be on the booth and devices we
can localize more exactly. We evaluate the performance
of using either one or the other group. After the labor-
intensive task of ground truth extraction we compare it
with the number of mobile devices extracted with our



Samples All Localizable
1 22.1% 18.9%
2 20.9% 17.2%
3 20.4% 16.3%
4 20.0% 15.6%
5 19.6% 15.0%
6 19.2% 14.4%
7 18.8% 14.0%

Table 3: Evaluating the
performance of our crowd density
estimation with WiFi probes with a
few calibration points and showing
the impact of the number of
calibration points needed.
Regression results based on
training of all combinations of
calibration points from one up to 7
calibration points per day and
computed the mean error. The
absolute error of the estimation
and the percentage to the ground
truth is shown.

0.71 visitors/sqm
0.63 visitors/sqm
0.55 visitors/sqm
0.47 visitors/sqm
0.39 visitors/sqm
0.31 visitors/sqm
0.23 visitors/sqm

0.15 visitors/sqm

0.07 visitors/sqm

0.0 visitors/sqm

Figure 6: Crowd density estimation heat map.

method to present the connection between the number
of people retrieved from ground truth and the number of
people measurable with WiFi probes. The ratio between
both values gives At 71 points in time we compare the
manual counted visitor number with the extracted value of
discovered devices. In average the number of discovered
devices has to be multiplied by 1.5 (1.7 for localizable
devices)to obtain the true crowd density. The factor varies
between 1.0 and 2.6. To see this in comparison: The
CeBIT dataset has an average ratio of 1.15 and varies
between 1.0 and 1.5.

We evaluate the estimation depending on the number

of calibration points. Our approach is steady over time
and not many calibration points are needed. Using a sin-
gle calibration value for training we get 22.1% deviance
(15.8% with localizable devices). By using up to 7 cali-
bration points only decreases the error by 3.3% (3.9%)
(see Table 3). We demonstrate that the further inclusion
of calibration points covering multiple days does not im-

prove the performance. We used all combinations of days
starting from one up to all seven days and computed the
mean error to the ground truth. We demonstrate that our
approach is steady over time and that sets of calibration
points from multiple days do not improve the estimation
error significantly. The average error for using all calibra-
tion points from all seven days is 15.8% (11.7%) which is
only a small decrease of 3.3% (2.1%) compared of relying
just on a single day.

Localized crowd density (‘heat map’):

We define the localized crowd density estimation as the
estimated number of people per m? at timestamp t. Hav-
ing the calibration factor and the location of the visitors
and the average displacement error at timestamp t. Now
both a time-referenced and topological transformation is
made into a 2-dimensional heat map. A visual interpre-
tation is easy while numbering regions with values is not
easy to quickly grasp by the viewer. A high crowd den-
sity is marked in red and a low crowd density is marked
as blue. Figure 6 show the resulsting visualization of the
crowd density heat-map.

Conclusion

We performed an experiment with 31 WiFi scanners
mounted on the ceiling with directional antennas sens-
ing 7.6 million WiFi probes from consumer devices. The
evaluation of our real life data set demonstrated the fea-
sibility of sensing unmodified WiFi enabled consumer
devices for monitoring crowd conditions. With our setup
we evaluated that 90% of the calculated locations are
within 5 to 11m event with a shielded device in the pocket.
Regarding our video based ground truth comparisons, in
average two thirds of the visitors can be mapped to one
detected mobile devices, 90.8% can be localized, 86.0%
can be tracked at more than a single location. We pre-



sented a initial method of visualizing the crowd condition
based on a heat map. Further work needs to be done

to evaluate detailed crowd conditions like crowd density,
crowd movement and common patterns.
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