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ABSTRACT 
The increase of advanced service offered by cellular networks 
draws lots of interest from researchers to study the networks and 
phone user behavior. From the phone user’s point of view, we are 
interested in learning caller behavior. In this paper, we 
characterize caller behavior using probabilistic models based on 
caller’s call arrival, inter-arrival, and talk time from the call logs.  
A probabilistic model is generally used to predict or estimate the 
future observation which is conditioned by a knowledge of the 
historical data. The question is how much historical data is 
adequate? We answer this question by presenting a technique to 
detect and compute the adequate amount of historical data to 
capture the caller behavior. In fact, this adequate amount of 
historical data is proved to be more relevant to the future caller 
behavior than considering the entire historical data and hence 
useful for constructing a predictive model for caller behavior. In 
addition, we show the improvement in the performance of a Call 
Predictor [16] when applying adequacy of data. For our analysis, 
we use the real-life call logs of 94 mobile users collected at MIT 
over nine months by the Reality Mining Project group. This paper 
extends our understanding of caller behavior. We believe that the 
results are useful in constructing a predictive model of a time 
series. 

Categories and Subject Descriptors 
H.4.3 [Information System Application]: Communications 
Applications. 

General Terms 
Algorithms, Experimentation, Human Factors. 

Keywords 
Caller, Single-peak, Multi-peak, Trace distance, Convergence 
time. 

1. INTRODUCTION 
Telecommunication device such as telephone has moved beyond 
being a mere technological object and has become an integral part 
of many people’s social lives.  
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This has had profound implications on both how people as 
individuals perceive communication as well as in the patterns of 
communication of humans as a society. Learning human behavior 
has always been the subject of interest in scientific fields (e.g. 
[19], [2], and [13]). There are also scientific reports in learning 
and characterizing user and network behavior (e.g. [1], [20], and 
[6]). 

In communication systems, a user can be a “caller” who initiates 
communication or a “callee” who receives request for a 
communication from caller. As a callee in a phone network, a user 
generally has received calls from several callers. We are 
interested in learning caller behavior. A knowledge of caller 
behavior can lead to a predictive model which forecasts or 
predicts the future behavior of the caller such as calling time and 
hence useful for scheduling and planning (e.g., it can be used to 
avoid unwanted calls and schedule time for wanted calls). It can 
also be useful for the Public Safety Answering Point (PSAP) for 
predicting 9-1-1 (emergency) calls. It can also be beneficial to 
voice spam detection and prevention, as well as call centers for 
resource utilization.  

Predictive models derived from communication logs have been 
studied extensively (e.g. [22], [17], and [9]). Recently there has 
been growing interests in the field of mobile social networks 
analysis to study human behavior by combing the computer 
technology and social networks (e.g. [6], [5], and [7]), but due to 
the unavailability of data, there have been far fewer studies. The 
Reality Mining Project at Massachusetts Institute of Technology 
[12] has made publicly available large datasets which we use for 
our analysis in this paper. 

Motivation 

In [16], authors proposed a Call Predictor which made the next-
24-hour incoming call prediction based on caller behavior and 
reciprocity which were extracted from call history. This raises a 
question of how much call history is actually needed. Does it 
mean the more historical data, the better performance of the 
predictor? To answer this question, we find it interesting to study 
caller behavior and the adequacy of caller’s past history. 

Main Contribution 

The main contribution of this paper is to infer the adequacy of 
historical call data to capture the behavior of the caller in order to 
construct a predictive model for future behavior observation. 

The rest of this paper is structured as follows: Section 2 describes 
and statistical analyzes the real-life datasets. Section 3 proposes 
the concept of adequacy of historical data and its computation. 
Section 4 carries out the validation of hypothesis. The paper is 



concluded in section 5 with a summary and an outlook on future 
work. 

2. REAL-LIFE DATASET AND ANALYSIS 
In our daily life, we receive phone calls from family members, 
friends, colleagues, supervisors, neighbors, and strangers.  We 
believe that every caller exhibits a unique calling pattern which 
characterizes the caller behavior. 

To study the caller behavior, we use the real-life datasets of 94 
individual call logs over nine months of the mobile phone users 
which were collected at Massachusetts Institute of Technology 
(MIT) by the Reality Mining Project [12]. These 94 individuals 
are faculties, staffs, and students. The datasets include people 
with different types of calling patterns and call distributions. 

Each call record in the datasets has the 5-tuple information which 
includes:  

 Date (date of call) 
 Start time (start time of call) 
 Type (type of call i.e., “Incoming” or “Outgoing”) 
 Call ID (caller/calee identifier) 
 Talk time (duration of call). 

We use the call logs to derive the traffic profiles for each caller by 
inferring the Arrival time (time of receiving call from the caller), 
Inter-arrival time (elapsed time between adjacent incoming calls 
from the caller), and Talk time (duration of call from the caller). 

2.1 Arrival Time 
Based on our real-life datasets of 94 mobile phone users with 
more than 2,000 combined callers, we can divide callers into two 
categories namely Single-peak callers and Multi-peak callers 
based on their arrival time. 

2.1.1 Single-peak Callers 
The single-peak callers are callers who tend to make more calls at 
around one particular time of the day and less and less number of 
calls as time of the call deviates from that time (favorite time). 
Thus, we make a hypothesis that call arrival time has a normal 
distribution ),( 2σμN  where μ  is the mean and 2σ  is the 
variance of call arrival time which can be calculated by Eq. (1) 
and Eq. (2) respectively. 
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The arrival time is now treated as a random variable X that 
consists of number of small random variables {x(1), x(2), x(3), ... , 
x(N)} where N is the total number of calls and x(n) is the nth call 
arrival time, is normal random variable which has probability 
density function (pdf) given by Eq. (3). 
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Hence the probability of receiving a call from caller k at time x is 
given by Eq. (4), where kμ  and 2

kσ  are the corresponding mean 
and variance of call arrival time of caller k. 
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To check our hypothesis, we randomly select 100 callers from our 
dataset and perform the chi-square goodness-of-fit test (or χ2-test) 
[11] (for testing the validity of the assumed distribution for a 
random phenomenon). We find that 30 callers have normal 
distribution at significant level α = 0.1. Therefore, these 30 callers 
are considered as single-peak callers and the other 70 callers who 
do not pass the χ2-test then belong to another group of callers 
which will be described in the next section. 

As an example, in Fig. 1 the histogram of the call arrival time on 
time-of-the-day scales of a single-peak caller and fitted normal 
distribution are illustrated where we shift our window of 
observation to begin at 5AM and end at 4:59AM such that the 
entire calling pattern is captured in the middle. In fact, we find 
that it is a proper window of observation for the majority of the 
callers in our datasets. 
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Figure 1: An example of single-peak caller whose call arrival 
time is fitted with normal distribution. 

2.1.2 Multi-peak Callers 
There is another group of callers whose calling behaviors based 
on arrival time are more random in the sense that they tend to 
have more than one favorite time of calling which result in more 
than one peak in their arrival time histograms.  

The normal distribution is obviously not suitable for this type of 
callers. In fact, none of the parametric probability models fit to 
their structures. Therefore, probability density model must be 
determined from the data by using nonparametric density 
estimation. The most popular method for density estimation is the 
kernel density estimation (also known as the Parzen window 
estimator [14]) which is given by Eq. (5). 
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K(u) is kernel function and h is the bandwidth or smoothing 
parameter. The most widely used kernel is the Gaussian of zero 
mean and unit variance which is defined by Eq. (6). 
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The choice of the bandwidth h is crucial. Several optimal 
bandwidth selection techniques have been proposed ([10], [23]). 
In this paper, we use AMISE optimal bandwidth selection using 
the Sheather Jones Solve-the-equation plug-in method [21]. 

Likewise, the probability of receiving a call from caller k at time x 
can be computed similarly to Eq. (4) but using probability density 
function defined in Eq. (5). 

As an example, the observed frequency of calls over nine months 
on time-of-day scales and fitted kernel density estimation are 
illustrated in Fig. 2. 
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Figure 2: An example of multi-peak caller whose call arrival 
time is fitted with kernel density estimation.   

2.2  Inter-arrival Time 
Caller behavior can also be characterized by the inter-arrival time 
which is the time interval between adjacent incoming calls as it is 
monitored from the callee’s point of view. Based on our dataset, 
by observing histograms of the inter-arrival time of all callers we 
find that they exhibit similar patterns in which the call frequency 
distribution is peaked at one particular point and exponentially 
decreases as inter-arrival time increases. Thus, we make a 
hypothesis that caller’s inter-arrival time has an exponential 
distribution exp(γ) where parameter γ  is the rate at which calls are 
received. The parameter γ can be calculated by Eq. (7) and E[Z] is 
the expected value of a random variable Z. 
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where inter-arrival time is a random variable Z which consists of 
small random variables {z(1), z(2), z(3), ... , z(N)}, where N is the 
total number of calls and z(n) is the inter-arrival time of the nth 
call, i.e. interval of time from (n-1)th to nth call. The pdf is given 
by Eq. (8). 

z
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Hence the probability of inter-arrival time from caller k is z time 
unit can be calculated by Eq. (9) where γk is the corresponding 
parameter of inter-arrival time of caller k. 
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The chi-square goodness-of-fit test is also performed here to 
validate our hypothesis of assuming exponential distribution for 
caller’s inter-arrival time. The tests are done using a significant 

level α = 0.1 at which all callers pass the test and therefore 
confirm our hypothesis. 

As an example, the histogram of inter-arrival time over nine 
months and fitted exponential distribution are illustrated in Fig. 3. 
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Figure 3: An example of caller’s inter-arrival time is fitted 
with exponential distribution. 

2.3 Talk Time 
Talk time is the amount of time spent by the caller and callee 
during the call. From the callee’s perspective, caller behavior can 
also be characterized by the talk time. Based on our observation 
of the histograms of the talk time of each caller, talk time exhibits 
an exponential-like pattern. Similar to the inter-arrival time 
pattern, the exponential distribution exp(λ) is initially assumed for 
the talk time as our hypothesis where parameter λ can be 
calculated by Eq. (10) and E[Y] is the expected value of a random 
variable Y. 
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Random variable Y represents the talk time that consists of small 
random variables {y(1), y(2), y(3), ... , y(N)}, where N is the total 
number of calls and y(n) is the talk time of the nth call. The pdf is 
given by Eq. (11). 

y
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Hence the probability of talk time with caller k is y time unit can 
be calculated by Eq. (12) where λk is the corresponding parameter 
of talk time of caller k. 
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Similar to our previous cases, the chi-square goodness-of-fit test 
is also performed using a significant level α = 0.1 at which all 
trials pass the test and therefore confirm our observation and 
hypothesis for talk time. 

An example of a histogram of talk time over nine months of a 
sample caller who is randomly selected from our datasets and 
fitted exponential distribution is illustrated in Fig. 4. 
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Figure 4: An example of caller’s talk time is fitted with 
exponential distribution. 

3. ADEQUACY OF HISTORICAL DATA 
The caller behavior based on arrival time, inter-arrival time, and 
talk time have been characterized in forms of probability models 
in the previous section. Generally, a probability model is used to 
predict or estimate the future observation which is conditioned by 
a knowledge of the historical data.  The question is how much 
historical data is adequate? This section attempts to answer this 
question. 

In our case, the historical data is a collection of call logs which is 
a time series (a collection of observations made sequentially 
through time [3]). Unfortunately, the call logs are not 
deterministic (or can be predicted exactly) but stochastic in that 
future is only partly determined by past values, so that the exact 
predictions of future values are not quite possible and hence have 
a probability distribution. 

The previous section shows that a single-peak caller can be 
characterized by a normal distribution model N(µ,σ2) which is 
characterized be the mean µ and variance σ2. In attempt to find 
out how much historical data is actually needed or adequate, we 
monitor the values of the mean and variance of arrival time for all 
single-peak callers as more historical data (increased by day) are 
taken into computations.  We observe the convergence of means 
and variances. As an example, Fig. 5 shows the convergence of 
mean and variance of arrival time of a single-peak caller as 
number of days towards the past increases. 
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Figure 5: An example of observed convergence of mean and 
variance of arrival time of a single-peak caller. 

It can be observed that the values of mean and variance converge 
to nearly constant after taking approximately the last 30 days of 
historical data. This means that the mean and variance of entire 
historical data are approximately the same as the mean and 
variance of the last 30 days of data. Since a single-peak caller is 
characterized by a normal distribution which depends on mean 
and variance, it implies that the last 30 days of data is adequate to 
capture the behavior of the single-peak caller. It is evident in Fig. 
6 that the pdf from taking entire historical data and taking only 
last 30 days are similar. 
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Figure 6: A comparison of pdf from (a) taking entire 
historical data and (b) taking only last 30 days of data. 

The previous section also shows that the inter-arrival and talk 
time have exponential distribution exp(m) which depends only on 
the mean m. Therefore we examine the values of mean of inter-
arrival and talk time as more historical data increases for all 
callers. However, we find that the convergence time is not 
observed. 

A knowledge of mean and variance might not provide a pattern 
for a multi-peak caller due to the characteristics of the 
nonparametric density estimation. However, we believe that it 
captures physical behavior of a caller. In fact, the convergence of 
values of mean and variance of call arrival time of multi-peak 
callers is also observed. Figure 7 shows an example of a multi-
peak caller whose mean and variance converge as the number of 
days towards the past increases. It can also be observed that the 
convergence time is approximately 60 days for this multi-peak 
caller. 
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Figure 7: An example of observed convergence of mean and 
variance of arrival time of a multi-peak caller. 



Figure 8 shows the pdf from taking entire historical data and 
taking the last 60 days of a multi-peak caller whose values of 
mean and variance are shown in Fig. 7. From Fig. 8, it appears 
that both pdf are slightly different in shape even though the mean 
and variance are nearly the same. 
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Figure 8: A comparison of pdf from (a) taking entire 
historical data and (b) taking only last 60 days of data. 

We believe that the call logs represent human behavior associated 
with trends and changes of behavior over time. Considering 
historical data within the convergence time may provide us the 
recent trend of the data which can be more relevant to the future 
observation. 

Our hypothesis is that the future behavior (pattern) of the caller 
based on call logs is more relevant to the pattern derived from the 
recent data (trend) than the pattern derived from the entire 
historical data (given that entire data are more than recent trend 
data). This hypothesis will be validated by the experiment 
conducted in the next section. 

The crucial issue here is that of the convergence time (recent 
trend period) therefore we propose a simple technique for finding 
convergence time using a Trace Distance (tD).   

Let us consider a sample of a converging signal shown in Fig. 9 
where vertical axis represents amplitude and horizontal axis 
represents reversed time (time that runs towards the past) as 
similar to the plots shown Fig. 5 and 7. 
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Figure 9: A converging signal which displays trace distances 
(tDa and tDb at reversed time a and b for demonstrating 
convergence time computation. 

A trace distance at time k (tDk) of signal s is a difference between 
the maximum amplitude and minimum amplitude from time k to 
infinity (most right-hand side of time k based on Fig. 9) which is 
given by Eq. (13). 

|||||| minmax KktDk −= ,                           (13) 

where kmax and kmin are defined by Eq. (14) and Eq. (15) 
respectively. 

{ })(),1(),...,2(),1(),(maxmax ∞−∞++= ssksksksk ,  (14) 

  { })(),1(),...,2(),1(),(minmin ∞−∞++= ssksksksk .  (15) 

Thus, the trace distances at time a and b shown in Fig. 12 
can be computed as tDa=||amax|-|amin|| and tDb=||bmax|-
|bmin||. 

Therefore, the convergence time (CT) of the signal s is defined as 
the time that the trace distance (tD) reaches the predefined 
threshold (tDth) as the trace distance computation starts from 
reversed time equals to zero to infinity which is given by Eq. (16). 

{ }},...,2,1,0{,| ∞∈== ktDtDkCT thks .           (16) 

For our case, the signal s can be a reversed time series of mean 
and variance and the variable k represents the number of days 
towards the past. 

An experiment is conducted to find convergence time of the 
callers in our datasets with tDth set to 1. The convergence time is 
computed for each caller based on the arrival time. We find an 
interesting result of a relationship between the caller’s 
convergence time and his/her number of peaks.  The result shows 
that as the number of peaks increases, the convergence time 
becomes larger. Figure 10 shows a plot of the average 
convergence time versus the number of peaks. 
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Figure 10: A plot of the number of peaks versus the average 
convergence time where the average convergence time 
becomes larger as the number of peaks increases. 

We find that the result is reasonable. People who have random 
behaviors tend to not establish any behavioral pattern in a short 
period of time rather expand a recognizable structure over longer 
period of observation time. For example, a caller who was 
initially making lots of calls in the morning then started to make 
some calls in the evening and he/she eventually is making calls 
consistently in both morning and evening hours (two-peak caller). 



It would take longer time to observe this caller's calling behavior 
than another caller who has been calling only during the morning 
hours (single-peak caller).   

4. VALIDATION 
To prove our hypothesis in the previous section that the future 
behavior (pattern) of the caller based on call logs is more relevant 
to the pattern derived from the recent data (trend) than the pattern 
derived from the entire historical data, we conduct an experiment. 

The experiment is conducted to present the comparison of the 
relevance or similarity in caller behavior between the future 
observation and entire historical observation, and the similarity in 
caller behavior between the future observation and recent trend 
observation (convergence time). 

To measure the similarity in calling behaviors, three 
measurements are chosen; Correlation coefficient, Hellinger 
distance, and Relative entropy. In addition, performance 
comparison of the Call Predictor (CP) proposed in [16] is also 
presented to observe the change in performance as the 
convergence time is considered. 

Correlation coefficient [11] is a number between -1 and 1 which 
measures the degree to which two random variables are linearly 
related. A correlation coefficient of 1 implies that there is perfect 
linear relationship between the two random variables. A 
correlation coefficient of -1 implies that there is inversely 
proportional relationship between the two random variables. A 
correlation coefficient of zero implies that there is no linear 
relationship between the variables. In many applications, a 
correlation coefficient is used to measure how well trends in the 
predicted values follow trends in past actual values or how well 
the predicted values from a forecast model fit with the real-life 
data. A correlation coefficient (r) can be computed by Eq. (17) 
where P and Q are random variables which consist of small 
random variables {p(1), p(2), p(3), ... , p(N)} and {q(1), q(2), 
q(3), ... , q(N)} respectively. 
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Hellinger distance ([8], [18]) has value between 0 and 1 which 
estimates the distance between probability measures. Let P and Q 
be the two probability measures which are N-tuple {p(1), p(2), 
p(3), ... , p(N)} and {q(1), q(2), q(3), ... , q(N)} respectively. P 
and Q satisfy pn≥0, ∑ =

n np 1 , qn≥0, and ∑ =
n nq 1. Hellinger 

distance is 0 implies that P = Q. Disjoint P and Q shows the 
maximum distance of 1. The Hellinger distance ( ),(2 QPd H ) 
between P and Q is given by Eq. (18). 
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Relative entropy or Kullback Leibler distance [4] is a measure of 
the distance between two probability distributions. The relative 
entropy is a measure of the difference between assumed 
distribution Q and the true probability distribution P. Relative 
entropy is non-negative and is zero if P = Q. The relative entropy 
of Q from P is defined by (19) where P = {p(1), p(2), p(3), ... , 

p(N)} and Q = {q(1), q(2), q(3), ... , q(N)}. Note that we use the 
convention that 0log(0/q) = 0 and plog(p/0) = 1. The relative 
entropy (D(P||Q)) between P and Q can be computed by Eq. (19) 
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In our case, P and Q are the N-tuple probability mass functions of 
the future observation and testing period respectively where the 
testing period can be either within the convergence time or entire 
historical data. 

Phithakkitnukoon and Dantu [16] proposed a Call Predictor (CP) 
which computed receiving call probability and made the next-24-
hour incoming call prediction based on caller’s behavior and 
reciprocity. The caller’s behavior was measured by the caller’s 
call arrival time and inter-arrival time. The reciprocity was 
measured by the number of outgoing calls per incoming call and 
inter-arrival/departure time. The CP took into account the entire 
call historical. 

In this experiment, we examine the performance of the CP with 
considering the convergence time of the call history and compare 
to the performance of the CP without considering the convergence 
time (or taking entire call history). The performance is measured 
in terms of Error rate which is defined as a ratio of the number of 
fault predictions to the total number of predictions made. 

The experiment is conducted with 100 randomly selected callers 
including 30 single-peak callers and 70 multi-peak callers from 
our datasets. The most recent seven days of call logs are assumed 
to be future observation. The trace distance threshold tDth is set to 
1 to compute the convergence time (CT). The CP repeatedly 
computes the CT for each of the seven days prior to making call 
prediction. 

Figure 11(a), 12(a), 13(a), and 14(a) show  the comparisons of the 
computed correlation coefficients, Hellinger distance, relative 
entropy, and error rate of the CP respectively of all 100 callers 
between taking entire historical data (represented with an asterisk 
(*)) and taking data within the convergence time (represented 
with a circle (o)) where the first 30 callers are single-peak callers 
and at rest are multi-peak callers (31-100). 

Figure 11(b), 12(b), 13(b), 14(b) show the changes in the values 
of correlation coefficient, Hellinger distance, relative entropy, and 
error rate of the CP respectively as the convergence time is 
considered. 

It can be observed that the value of correlation coefficient 
increases as the convergence time is considered for all 100 callers 
which tells us that the recent caller behavior or calling pattern is 
more relevant (correlated) to the future calling pattern than the 
pattern observed from entire call history. 

The values of Hellinger distance, relative entropy, and error rate 
of the CP decrease as the convergence time is considered which 
also confirms that the recent calling pattern is more relevant to the 
future pattern. 

The experimental result is summarized in the Table 1 which lists 
the numerical average values of the correlation coefficient, 
Hellinger distance, relative entropy, and error rate of the CP when 
the entire data is considered, as well as when the data within the 
convergence time is considered, and their average changes for 



categorized single-peak callers and multi-peak callers. Since the 
single-peak callers have normal distribution, the change in the 
similarity measures are relatively low compared to the multi-peak 
callers. 

This experimental result shows that the data within convergence 
time is adequate to construct a predictive model and in fact it 
composes a recent pattern which is more similar or relevant to the 
future pattern than considering pattern composed by the entire 
historical data. 
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Figure 11: (a) Comparison of correlation coefficients and (b) 
its corresponding change from taking entire historical data to 
taking data within convergence time of each caller.  
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Figure 12: (a) Comparison of Hellinger distances and (b) its 
corresponding change from taking entire historical data to 
taking data within convergence time of each caller. 
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Figure 13: (a) Comparison of relative entropy and (b) its 
corresponding change from taking entire historical data to 
taking data within convergence time of each caller. 
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Figure 14: (a) Comparison of error rate of the call predictor 
and (b) its corresponding change from taking entire historical 
data to taking data within convergence time of each caller. 

5. CONCLUSION 
In this paper, we propose a technique to find the adequacy of 
historical call logs in order to capture the caller behavior 
(pattern). Firstly, the statistical analysis of real-life datasets to 
characterize caller behavior is carried out. We classify callers into 
two groups namely single-hop callers and multi-hop callers based 
on the distribution of the arrival time of the calls. We have 
verified the normal distribution for single-hop callers and 
estimated the distribution for multi-hop callers using kernel 
density estimator. We have also verified exponential distribution 
for inter-arrival time and talk time. 

Since the caller behavior can be characterized by probability 
models which are used to predict or estimate the future behavior 
conditioned by a knowledge of the historical data, the question is 
how much historical data is adequate. 

 
 



Table 1  
The Average of Correlation coefficients (r), Hellinger distance ( 2

Hd ), Relative entropy (D), and Error rate (Err) of taking entire 
historical data comparing to taking only data within the convergence time and its average change (increase(+) or decrease(-)) 

Caller
s 

Average Measures of Taking Entire 
Data 

Average Measures of Taking Data 
within Convergence Time 

Average Change 

r 2
Hd  D Err(%) r 2

Hd  D Err(%) r 2
Hd  D Err(%) 

(1-30) 
Single-
peak 0.1476 0.6573 6.9377 8.751 0.1837 0.63 6.547 7.9153 +0.0361 -0.0273 -0.3907 -0.8357 

(31-100) 
Multi-
peak 0.0007 0.6791 6.8423 12.3672 0.2043 0.5329 4.6256 10.0429 +0.2036 -0.1462 -2.2167 -2.3243 

             
Our study shows that the mean and variance of the arrival time 
converge to nearly constant as more historical data taken into 
account which means that only data within the convergence time 
is needed to construct a distribution model if the arrival time is 
characterized by mean and variance (which is true for normal 
distribution). The convergence is not observed for the inter-arrival 
and talk time however. 

We also find that as the number of hops increases, the 
convergence time gets longer. Therefore we propose a simple 
technique to compute the convergence time using trace distance. 
In fact, the data within the convergence time is proven to be more 
relevant (or has higher correlation) to the future pattern of the 
caller by using correlation coefficient, Hellinger distance, and 
relative entropy. We believe that a call log is a human behavior 
related time series which is involved in trends or changes of 
behavior over time, therefore the mean and variance within the 
convergence time reflect the recent behavior or pattern of the 
caller.   

We also show that our technique can be useful for constructing a 
predictive model for future incoming calls such as the Caller 
Predictor proposed by Phithakkitnukoon and Dantu [16] where its 
performance is improved by applying the proposed technique. 

We will continue to investigate caller behavior and extend the 
idea of the adequacy of historical data to different types of data as 
our future direction.   
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