
  

  

Abstract— As urbanization increases rapidly, there is a need 
for better understanding of the city and how it functions. 
Increasing digital data produced by the city’s inhabitants holds 
great potential for doing so. In this work, an analysis of mobile 
phone call intensity and taxi volume in Lisbon, Portugal was 
carried out. With one source of data describes how city 
operates socially over mobile phone network and the other 
characterizes urban dynamic in traffic network, we discovered 
the inter-predictability between them. Based on one month of 
observation, we found that the variation in the amount of 
mobile phone calls was strongly correlated with the taxi volume 
of the previous two hours. Hence taxi volume can be used to 
predict mobile phone call intensity of the next two hours. In 
addition, we found that the level of inter-predictability varied 
across different time of the day; taxi was a predictor during 
PM hours while mobile phone call intensity became a predictor 
for taxi volume in AM hours. Strong correlations between these 
two urban signals were observed during active hours of the day 
and active days of the week. 

I. INTRODUCTION 
With the rapid growth of urbanization, the need for better 

services (e.g., public transportation, energy, communications) 
and urban planning (e.g., infrastructures, environments, 
policies) demands for better understanding of city dynamics. 
The development of pervasive technologies such as global 
system for mobile communications (GSM) and global 
positioning system (GPS) provides useful tools for sensing 
social and traffic activities in the city. Analyzing GPS-
enabled vehicle traces and mobile phone activity thus 
provides to some extent an overview of how the city 
functions.  

Today’s taxis are equipped with GPS devices for better 
monitoring and dispatching. Their traces have been used to 
study different aspects of the traffic network as they provide 
fine-grained data that reflects the state of traffic flow in the 
city. Taxi traces typically carry occupancy information from 
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which pick-up and drop-off location information can be 
easily inferred. 

Mobile phone call data, on the other hand, has been used 
to study social aspect of the city. With its high penetration 
rate, mobile phone activity data can truly reveal the city’s 
social characteristics.  

By examining these two useful sources of data that 
describe city from different perspectives, in this study, we 
aim to explore hidden relationship between them – 
particularly the inter-predictability; can one data source be 
used to predict the other? Although they both explain the city 
in different ways, we believe that they are related in some 
way and we aim to explore the underlining relationship in 
this present work.   

The remainder of the paper is organized as follows. 
Section II briefly describes related work in studying urban 
dynamics using taxi and mobile phone data. Section III 
describes the dataset used in this study. Our analysis and 
results are presented in Section IV. Finally, Section V 
concludes and summarizes our findings. 

II.  RELATED WORK 
With the advent of the pervasive technologies (e.g. GPS, 

GSM, Wi-Fi), several work have been presented to explore 
and improve urban mobility. Among them mining taxi 
trajectories has recently attracted much attention. Taxi-GSP 
traces have been used in a number of studies to develop 
better solutions and services in urban areas such as estimating 
optimal driving paths [1-3], predicting next taxi pick-up 
locations [4-8], modeling driving strategies to improve taxi’s 
profit [8-9], identifying flaws and possible improvements in 
urban planning [10], and developing models for urban 
mobility, social functions, and dynamics between the 
different city’s areas [11-12].  

Yuan et al. [1] present the T-Drive system that identifies 
optimal route for a given destination and departure time. 
Zheng et al. [2] describe a three-layer architecture using the 
landmark graph to model knowledge of taxi drivers. Ziebart 
et al. [3] present a decision-modeling framework for 
probabilistic reasoning from observed context-sensitive 
actions. The model is able to make decisions regarding 
intersections, route, and destination prediction given partially 
traveled routes.  

Yuan et al. [4] develop a recommender system for both 
taxi drivers and passengers that takes into account the 
passengers’ mobility patterns and taxi drivers’ pick-up traces. 
Chang et al. [5] propose a four-step approach for mining 
historical data in order to predict taxi demand distributions 
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based on time, weather, and taxi location. They show that 
different clustering methods have different performances on 
distinct data distributions. Phithakkitnukoon et al. [6] present 
a model for predicting the number of vacant taxis for a given 
area of the city based on the naïve Bayesian classier with 
their developed error-based learning algorithm and a 
mechanism for detecting adequacy of historical data. Liu et 
al. [7] classify taxi drivers according to their income. They 
observe that top drivers operate in a number of different 
zones while maintaining exceptional balance between taxi 
demand and traffic conditions. Ordinary drivers on the other 
hand operate in fixed zones with few variations.  

Ge et al. [8] present an approach for extracting energy-
efficient transportation patterns from taxi traces and use it to 
develop a recommender system for pick-up locations and a 
sequence of waiting locations for a taxi driver. Zheng et al. 
[10] identify flawed urban planning in region pairs with 
traffic problems and the linking structure among these 
regions through their analysis of taxi traces. Qi et al. [11] 
investigates the relationship between regional pick-up and 
drop-off characteristics of taxis and social function of city 
regions. They develop a simple classification method to 
recognize regions’ social areas that can be divided into scenic 
spots, entertainment districts, and train/coach stations. Veloso 
et al. [12] present an exploratory analysis of the 
spatiotemporal distribution of taxi pick-ups and drop-offs. 
They investigate downtime (time spent looking for next 
passengers) behavior, identify taxi-driving strategies, and 
explore relationship between area type (based on points of 
interest (POIs)) and taxi flow, as well as the predictability of 
a taxi trip. 

In addition to the dynamic in vehicular network, the 
mobility of people at the individual level is equally 
important. With its ubiquity, mobile phones have become 
human probes for sensing human behavior and social 
dynamics. Therefore mobile phone data has been used 
increasingly in various studies aiming to develop universal 
laws that govern human behavior.  

Song et al. [13] study the randomness in human behavior 
and to what degree individual human actions are predictable 
by analyzing mobility patterns of mobile phone users. Their 
results show 93% average predictability in people’s mobility. 
Using cellular network data, Isaacman et al. [14] propose and 
evaluate three algorithms derived from a logistic regression-
based analysis, and describe clustering techniques to identify 
important locations. They are able to detect home and work 
locations accurately, which is then used to perform an 
analysis of commute distance and estimate commuting 
carbon footprints.  

Calabrese et al. [15] present an analysis of crowd 
mobility during special social events (e.g., sport game, 
concert) by analyzing mobile phone-location traces. Using 
data collected from nearly one million mobile phones, the 
authors are able to correlate social events that people go with 
their home locations. Using similar a dataset and POI 
information, Phithakkitnukoon et al. [16] develop the 
activity-aware map that describes the most probable activities 
associated with specific areas of a city. Their results show a 
strong correlation in daily activity patterns between groups of 
people who share common work area types. Traag et al. [17] 

describe an approach to correlate human mobility patterns 
with social events using trajectories of mobile phone users. A 
probabilistic framework is developed and used to determine 
the users who participate in a given social event. 

The aforementioned studies focus solely on using either 
taxi or mobile phone call data to study urban functionality 
and develop intelligent systems. In contrast, this work 
investigates the relationship between these two data sources 
that describe city in different ways. To our knowledge, this is 
the first study to do so and we hope that this study will pave 
the way for more in-depth investigations in this direction.    

III.  DATASETS 
This work analyses data of mobile phone call intensity 

and taxi volume in Lisbon, Portugal. The data was collected 
in December 2009 (a period of 31 days). The area of study 
corresponds to the municipality of Lisbon, of around 110 
km2, and a population of 800,000 habitants. The city 
downtown is characterized by a higher population density 
including touristic, historic and commercial areas. Encircling 
the city center, there are residential areas surrounding 
business areas with lower population density. Major 
infrastructures (e.g., airport and industrial facilities) are 
located in the city’s periphery. The public transportation 
system consists on bus, metro, train, and ferry. All 
transportation systems are connected with stations in the city 
center.  

Our taxi dataset was provided by GeoTaxi [18], a 
company that focuses on software development for fleet 
management, and holds about 20% of the taxi market share in 
Portugal. The dataset was composed of around 500,000 taxi-
GPS location points and collected from 230 taxis. Along with 
the GPS location (latitude, longitude) information, it reported 
speed, bearing, engine status, and occupancy status of the 
taxi. The amount of pick-ups and drop-offs were inferred, 
which accounted for 44,731 distinct trips and was termed taxi 
volume in this study. 

The overall taxi volume’s spatial distribution in Lisbon is 
shown in Fig. 1 (on 500x500m2-grid cells), where the number 
of pick-ups on each cell during the period under study is 
represented by a color scale (red corresponds to cells with a 
higher number of pick-ups). Some major locations are 
identified, such as city downtown (A), airport (B), train 
stations (C, D) and ferry dock (E). Different public 
transportation modalities (airport, train, ferry, bus) are well 
connected through taxi services.  

The other dataset was mobile phone call intensity, which 
was provided by TMN [19], which is one of the main 
telecommunications operators in Portugal holding about 40% 
of the market share. The dataset contained information from 
the traffic channel, which carried speech and data traffic. The 
data was aggregated hourly, for each cell site, with cleaning 
and transformation procedures done by the data provider. For 
our study, only the number of connections successfully 
started for voice calls was considered for each cell site, which 
was defined as call intensity. Fig. 2 shows a spatial 
distribution of mobile phone call intensity where each dot 
represents the location of a cell site, and its size corresponds 



  

to the average amount of calls per hour. Areas with higher 
call intensity usually present higher taxi volume. 

 

 
Figure 1.  Spatial distribution of taxi volume (number of pick-ups). 

 

 
Figure 2.  Spatial distribution of cell sites and corresponding mobile phone 

call intensity (average amount of calls per hour on each site). 

IV.  ANALYSIS AND RESULTS 
By examining the temporal distributions of taxi volume 

and mobile phone call intensity as shown in Fig. 3, we 
noticed their similar patterns; both gradually increase in the 
morning around 7am, stay highly active, and then drop down 
slowly in the evening around 7pm. In addition, we observed 
that mobile phone call intensity appeared to follow the taxi 
volume with an approximate gap of about 1-2 hours.    

To further explore this relationship, we extracted data as 
hourly aggregated time series. Since they both have different 
units, the time series were thus normalized (by the sum) to [0, 
1]. We overlaid these time series on the same plot as shown 
in Fig. 4 and observed similar temporal patterns. Both 
exhibited daily cycles. Mobile phone call intensity reached 
almost zero (minimal activities) between midnight and 6AM 

while high values appearing around noon. Taxi volume time 
series appeared to follow this similar pattern with low values 
emerged during off-peak hours (little after midnight until 
early morning). It is also observable a reduction of the 
activity from both services on weekends and holidays.  

 
Figure 3.  Temporal distribution of mobile phone call intensity (blue) and 

taxi volume (green) across different time of the day where 0 implies 
midnight to 1AM, 1 implies 1AM-2AM, and so on. 

 

 
Figure 4.  Normalized time series of mobile phone call intensity (blue) and 
taxi volume (green) over 31 days of  observation. The grey line on x-axis 

represents the weekend periods while the red line corresponds to the 
holidays (December 1st, 8th, and 25th). 

 

To quantify the difference between these two time series, 
we computed the Euclidean distance (ED) as follows: 

 ��� = �(�� − 	�)� = |�� − 	�| (1) 

where gi  represents the mobile phone call intensity at hour i 
and ti denotes taxi volume at hour i. Hence G = {g1, g2, …, 
gn} and T = {t1, t2, …, tn} represent the normalized time series 
of GSM call intensity and taxi volume of length n, 
respectively.  

Euclidean distance of these time series turned out to be 
0.2100 and its hourly distances are shown in Fig. 5.  
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Figure 5.  Hourly Euclidean distance of the normalized time series of 
mobile phone call intensity and taxi volume. The grey line on x-axis 

represents the weekend periods. 

Furthermore, we observed daily and weekly cycles. 
Through our examination of the data, we found that the 
highest similarity between these time series was during 8AM 
to 10PM (active hours) with the Euclidean distance of 
0.1917. The hourly distance is shown in Fig. 6. 

 
Figure 6.  Hourly Euclidean distance of the normalized time series of 
mobile phone call intensity and taxi volume during 8AM to 11PM for 

which the overall distance was found to be the lowest at 0.1917.  The grey 
line on x-axis represents the weekend periods.  

From weekly cycle perspective, weekdays that are 
associated with more activities (mostly repeated activities in 
temporal orders such as commuting to work, having lunch at 
the same time and same restaurant, making a phone call 
before arriving at home, and so on) than weekends 
unsurprisingly yielded more correlated behaviors between 
mobile phone calls and amount of taxis. The Euclidean 
distances were 0.2094 and 0.2251 for weekdays and 
weekends, respectively. The Standard Deviations were 
0.13278 and 0.1401 for the same periods. Fig. 7 shows 
hourly distance of weekdays. 

 
Figure 7.  Hourly Euclidean distance of the normalized time series of 

mobile phone call intensity and taxi volume during weekdays. 

We have so far observed that there is a correlation 
between the two i.e., their values vary in a similar way, 
especially during active hours of the days (8AM-10PM) and 
active days of the week (weekdays). We then wanted to 
investigate further in terms of predictability between them. 
More specifically, can one data source be used to predict the 
other and to what extent?  

To do so, we employed the coefficient of determination or 
R2 (that is widely used for regression analysis) to measure the 
interdependency between these two urban signals for 
different time shifts. The time shifting was used here to 
examine the predictability that one had on the other. For 
example, one-hour lag of X yields a high R2 value with Y 
implies that X is likely a one-hour predictor of Y i.e., the 
variation in values of X suggest a similar variation in values 
of Y of the next hour.  

The coefficient of determination or R2 can be calculated 
as: 

 � = ∑ (�����)
��∑ (������)	

�
��

∑ (�����)��
, (2) 

where �� is the mean and �� denotes the predicted value of y 
(i.e., ��� = � + ��� + ��). 

By fixing mobile phone time series and shifting taxi time 
series between -5 hours to +5 hours (e.g., -5 hours of time 
shift means considering mobile phone data at time t against 
taxi data at time t-5 hours), we discovered that at time shift of 
-2 hours the two data sources had the highest correlation. As 
shown in Fig. 8, at time shift of -2 hours the Euclidean 
distance and R2 values were 0.1563 and 0.8512, respectively.  
This suggests that generally the taxi volume is a 2-hour 
predictor of mobile phone intensity. In other words, the 
variation in the amount of taxis is an indicative variable for 
the mobile phone call intensive of the next two hours. 

 

 
Figure 8.  Fitting results for the sliding window between GSM and taxi 

data. 

The hourly Euclidean distance of this 2-hour difference 
comparison is shown in Fig. 9. The plot of the normalized 
taxi volume against the normalized mobile phone call 
intensity is shown in Fig. 10 along with the fitted linear 
function � = ��� + ��, where �� = 0.88417, �� = 0.092295, 
and R2 = 0.8512. 
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Figure 9.  Hourly Euclidean distance of the normalized time series of 

mobile phone call intensity and taxi volume of the time shift of -2 hours 
(i.e., comparing mobile phone data at time t with taxi data at time t-2.  

 

 
Figure 10.  The fitted linear function of the normalized taxi volume (at time 
t-2) against the normalized mobile phone call intensity (at time t) with R2 = 

0.8512. 

 

Having observed strong correlations at active hours of the 
day and active days of the week, as well as 2-hour time 
difference led us to a further investigation of how this inter-
predictability varies across different time of the day. 

Similar to the previous approach, by keeping the 
normalized mobile phone time series fixed while shifting 
taxi time series between -5 and +5 hours, we computed R2 
values across varying time shifts for each different hour of 
the day. The result is shown in Fig. 11 where this inter-
predictability was observed to change over time. It turned 
out that there were strong inter-predictabilities (correlations) 
during active hours of the day, which was line with our 
previous observation. Interestingly, we found that during the 
active hours, mobile phone call intensity was a predictor for 
taxi volume in AM hours and the relationship was reversed 
as the taxi volume became a predictor for mobile phone call 
intensity in the PM hours. Hence at noon hour there was a 
strong correlation at 0 time shift. In other words, variations 
in both urban signals were well synchronized at around 
midday. 

 
Figure 11.  Pseudocolor plot of R2 values across varying time shifts of 

different hours of the day. 

We believe that our findings to some extent unveil 
relationship between two different urban signals; as one 
describes sociality of the city while the other characterizes 
state of traffic flow. The findings are useful for developing 
efficient intelligent transportation systems as they provide 
the link between social and transportation networks. 

V. CONCLUSION 
In this work, we explored a relationship between the taxi 

volume and mobile phone call intensive in Lisbon, Portugal. 
Particularly we were interested in the inter-predictability 
between these two urban signals. Based on one-month of 
data, we found a strong correlation between them during 
active hours of the day (8AM-10PM) and active days of the 
week (weekdays). Moreover, we also discovered that mobile 
phone call intensity had a strong correlation with taxi 
volume of the previous two hours, which means that the 
amount of taxis can be used to predict the intensity of 
mobile phone calls of the next two hours. Furthermore, we 
found that this inter-predictability varied across different 
time of the day. Intensity of mobile phone calls was a 
predictor of taxi volume in morning hours while the amount 
of taxi flow became a predictor of mobile phone calls in the 
afternoon and evening.  

Nonetheless, there were a number of significant 
limitations to our study. The first of these is the limited 
amount of data used. Only one month of data were available 
to us at time of this study, which limited our observation 
from which our results were obtained. Another potential 
limitation is the linear relation that was assumed between 
our two data sources in this study. Further investigation thus 
needs to be done in finding the most suitable function for 
their relationship. A final limitation related to the extent to 
which our findings are applicable beyond the city of Lisbon. 
As urban area of a First World (developed) country and a 
member of the Schengen area, Lisbon has significant 
similarities with many European and other developed cities 
in the world. We thus believe that the findings are likely to 
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be applicable to cities with broadly similar social, cultural, 
and economic profiles. 

This study sheds light on the multi-source urban data 
fusion for better understanding of urban functionality and 
developing efficient transportation systems. We hope that 
our findings suggest new ways to use multi-source data to 
investigate the interplay between different urban entities. 
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