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Abstract. Knowing where vacant taxis are and will be at a given time
and location helps the users in daily planning and scheduling, as well
as the taxi service providers in dispatching. In this paper, we present a
predictive model for the number of vacant taxis in a given area based on
time of the day, day of the week, and weather condition. The history is
used to build the prior probability distributions for our inference engine,
which is based on the näıve Bayesian classifier with developed error-based
learning algorithm and method for detecting adequacy of historical data
using mutual information. Based on 150 taxis in Lisbon, Portugal, we
are able to predict for each hour with the overall error rate of 0.8 taxis
per 1x1 km2 area.

1 Introduction

We envision a map-based service platform that allows access to real-time infor-
mation about the state of taxi transportation as well as predictions regarding
its future state. A pilot service that turns available taxi-GPS data into useful
contextual information that will be provided to citizens for making taxi trans-
portation more efficient and pleasant to use and to policy-makers as a decision-
support tool. As an initial step towards building such a platform, we present
in this paper a framework for predicting the number of vacant taxis in a given
area. The knowledge of the current state of the taxis (number of vacant taxis) in
different areas in the city as well as the future state provides the information for
a better scheduling. For example, a tourist who arrives at an airport in a transit
city and wants to make a trip inside the city with limited time will benefit from
the service by using it to plan out a series of taxi rides around the city. A taxi
service provider can also use the platform to monitor their taxis and optimize
dispatch scheduling. The envisaged platform paves the way for Ambient Intelli-
gence (AmI)’s smart city concept that refers to physical environments in which
information and communication technologies and sensor systems disappear as
they become embedded into physical objects and the surroundings in which we
live, travel, and work [1].



2 Related Work

In recent years, a massive increase in the volume of records of when and where
people are has been produced with large deployment of pervasive technologies
in the cities. These digital footprints of individual mobility pattern have moti-
vated an increasing number of research in human mobility such as city dynamics
[2], predictability of human mobility [3], event-driven traveling pattern [4], and
activity-based mobility pattern [5].

GPS-enabled vehicle data such as taxi traces have been collected and ana-
lyzed. Chang et al. [6] describe a model that predicts taxi demand distribution
based on time, weather condition, and location. Results are shown with different
clustering techniques and based on five taxi drivers over two months in service.
Yamamoto et al. [7] propose an adaptive routing algorithm using fuzzy clustering
to improve taxi dispatching by which vacant taxi drivers are adaptively assigned
to pathways with many potential customers expected. Ziebart et al. [8] describe
a framework that probabilistically models a distribution over all behaviors (i.e.,
sequences of actions) using the principle of maximum entropy within the frame-
work of inverse reinforcement learning. With 25 taxis, they show that their model
outperform the existing models in turn, route, and destination prediction. Liu
et al. [9] analyze 3,000 taxi drivers’ operation behavior and categorize them into
top and ordinary drivers based on the income. The result reveals the top driver’s
intelligence through path choice and location.

3 Data Preparation

In this research, we use anonymous data of taxi-GPS enabled traces collected
during the period from Sept. 1 thru Dec. 15, 2009 by Geotaxi[10]. This includes
2.6 million anonymous locations of 150 taxis in Lisbon, Portugal. Lisbon is the
capital of Portugal with its urban area expanding around the downtown with
greatest population density, touristic, historic and commercial areas, and the
center for public transportation services. Residential area, airport, and indus-
trial facilities are located in the citys periphery. The data sampling rate varies
according to the trip – distance driven, time elapsed, or state changed (e.g. oc-
cupancy). Each of the 150 taxi traces carries the information about the taxi’s
location, service status (occupied, vacant), and the corresponding time and date.
If S = {s1, s2, ...} represents a trace of a taxi, then each instance sample k con-
tains location, service status, and timestamp, i.e. sk = (latitudek, longitudek,
servicek, unix timestampk). For our analysis, we model the map of Lisbon with
one-kilometer square grid cells. For each cell, the ID is assigned in raster scan-
ning fashion where it begins with ID #1 at the bottom left corner and increases
horizontally left to right. Once it reaches the most right cell, then the counting
continues on the next line (upward). The total number of cells in this study is
144 with 16 horizontal cells and 9 vertical cells, as shown in Fig 1(a). To give the
readers a sense about our data, Fig. 1(b) shows a sample taxi trace of 10 hours
in service, where each dot represents the recorded location with red and green
color denoting the service status of being occupied and vacant, respectively.



(a) Area of study (b) A sample taxi trace

Fig. 1. Map of Lisbon is modeled by 1x1 km2 grids and a sample of a taxi trace during
10 hours in service. The red dot represents reported location when the taxi is occupied
while the green one shows when the taxi is vacant.

4 Predictive Model

The objective is to predict the number of vacant taxis in a grid cell for a given
time. To do so, in a probabilistic approach, we need an inference engine that
estimates the probability of some numbers of vacant taxis within a cell given
some observables drawn from historical data. The prediction can then be de-
rived according to the maximum probability criterion. Clearly, if the predictor
performed perfectly, one would expect no error. In reality, that is not the case.
To improve the performance of the predictor, the predictor thus needs to learn
from the errors. Hence error-based learning is an essential part of the predictor.
One of the most critical elements in context-aware computing and AmI system
design is the large data processing as the system must deal with the increasing
amount of sensory data to build a priori knowledge for inferring the context of
the users. Similarly, in our case, we need a method to detect the adequacy of
historical data, which will reduce the amount of data in repository and compu-
tational cost while retaining the amount of information contained in the original
data. In this section, we will describe our approach in building the predictive
model that consists of inference engine, error-based learning, and adequacy of
data detection. The system overview is shown in Fig. 2.

Fig. 2. System overview.



4.1 Inference Engine

Taxi drivers prefer the areas with the most potential customers as well as the
areas with potential long-trip customers e.g. airport. A taxi, once occupied by a
customer(s) will move to the customer’s destination via some path (not neces-
sarily the shortest path). Once a customer ride is completed, the taxi becomes
vacant and cruises either in the same area or goes to other areas to seek its next
customers. Typically, each taxi attempts to minimize the search time for the next
customers. It is intuitive that a taxi driver wants to make the most money in the
least amount of time, and hopes to pick up many passengers whose destinations
are in places where there are customers to perpetuate a chaining of constant
business. As random as it seems, taxis can be predictable to some extent. Their
mobility patterns are driven by customers and their individual driving strategies
(to maximize revenue). Where and when they become vacant is of our interest
in this study. Thus, by considering each grid cell individually, a priori knowledge
about the number of vacant taxis of given time can be derived from historical
data.

As people normally travel according to the business hours around the city,
taxis thus move accordingly to meet the demand e.g. more vacant taxis in resi-
dential areas in the morning and in the commercial areas in the afternoon. Time
of the day therefore becomes a reasonable indicator for estimating vacant taxis
in an given area. Besides time of the day, day of the week seems to carry some
clue about the vacant taxis as well. For example, there tends to be more taxis
in business areas during the weekdays than in the weekends. Weather condition
also plays an important role in traveling decision making. A nice sunny day may
attract more people to go out and travel compared to a rainy day. The number
of vacant taxis thereby varies with the characteristic of the given area captured
by a series of observations based on these factors.

Our inference engine is constructed with a näıve Bayesian classifier, which is
a probabilistic classifier based on Bayes theorem with independence assumptions
[11]. In our case, we want to compute the likelihood of each possible number of
vacant taxis (Y ) given time (hour) of the day (T ), day of the week (D), and
weather condition (W ). The probability of the number of vacant taxis is yi can
be computed as

P (Y = yi|T,D,W ) =
P (Y = yi)P (T,D,W |Y = yi)

P (T,D,W )
, (1)

where T = {1, 2, 3, . . . , 24}, D = {Monday, Tuesday, . . ., Sunday}, and W =
{Sunny, Cloudy, Rainy}. The prediction is then made using MAP method [11],
which selects the number of vacant taxis that (yMAP ) that maximizes a posteriori
as follows:

yMAP = arg max
yi∈Y

P (Y = yi|T,D,W )

= arg max
yi∈Y

P (Y = yi)P (T,D,W |Y = yi)

= arg max
yi∈Y

P (Y = yi)
∏
i

P (T |Y = yi)P (D|Y = yi)P (W |Y = yi). (2)



As an example, Fig. 3 shows distributions of vacant taxi volume given dif-
ferent time of the day, day of the week, and weather condition. This sample
is based on the history of grid #28. The information of weather condition is
obtained from Weather Underground [12].

Fig. 3. A sample distribution of vacant taxis given time of the day, day of the week,
and weather condition. This sample is drawn from grid #28.

4.2 Error-based Learning

With the inevitable uncertainty that any predictive model must deal with, the
actual outcome may not occur as predicted. Hence error occurs in the system.
Instead of letting the error occurs while using it as part of evaluation for the
model, we utilize the error to improve the performance of our predictor. Espe-
cially the errors that take place most recently indicates the possibly change in
pattern. An efficient system must be able to automatically detect and adapt
into the change. So the key is to learn from the “recent” errors as the recent
data reflects the current trend. Our approach is to apply a weight function that
emphasizes on the recent errors from which the prediction is then adjusted ac-
cordingly. One possible weight function is the uniform function as given by Eq.
(3).

wu(t) =

{ 1
β tm − β ≤ t ≤ tm
0 otherwise

(3)

where tm is the most recent time and β is the bandwidth (indicating how much
of history being taken into account). The weight is distributed equally over the
most recent β errors. Another possibility is to assign more weight for more recent



errors within the bandwidth. This can be a linear function such as the one given
by Eq. (4).

wl(t) =

{ 1
β (t− tm + β) tm − β + 1 ≤ t ≤ tm
0 otherwise

(4)

The prediction will therefore be adjusted according to the weight function
as:

ŷ(t) := ŷ(t) +

t−1∑
i=t−β

w(i)e(i), (5)

where ŷ(t) is the prediction made at time t, w(i) is the weight function, and
e(i) = y(i) − ŷ(i) is the error measured by the difference between the actual
(y(i)) and predicted value.

4.3 Adequacy of Data

With the vision of the AmI, which refers to the environment equipped with sur-
rounding computing devices that are sensitive and responsive to the presence and
context of people, designers of such environment must deal with the processing
of a large human behavioral data. These data can be collected from multiple sen-
sors and processed in some sophisticated way to extract some knowledge about
the users. The larger data becomes, the higher capacity is required for storage as
well as computation. If the goal is to capture the core structure of some pattern
in the data, then the entire data might not be necessary needed. The interesting
question is then how much of historical data is actually adequate to characterize
behavioral pattern of interest?

In our case, the historical data is used to construct a priori distributions
for the predictor. Thus, the amount of historical data that allows us to capture
the same distributions as we were to use the entire data is “adequate”. The
behavioral pattern of interest in our case is therefore the distribution of vacant
taxis over the grid cells.

To detect the adequacy of historical data, we apply information theory’s mu-
tual information [13], which is a measure of the amount of information that one
random variable contains about another random variable. Let X denote a ran-
dom variable representing entire data and Z be a random variable representing
some amount of the most recent data in X. The mutual information I(X;Z) is
defined as the reduction in the uncertainty of X due to the knowledge of Z, as
follows:

I(X;Z) = H(X)−H(X|Z)

= H(X) +H(Z)−H(X,Z), (6)

where H(X) and H(X,Z) are information entropy (uncertainty) of X and joint
entropy given by Eq. (7) and (8), respectively.

H(X) = −
∑
x

p(x)log2p(x) (7)



H(X,Z) = −
∑
x,z

p(x, z)log2p(x|z) = −
∑
x,z

p(x, z)log2
p(x, z)

p(z)
(8)

The idea is to find the amount of data carried by Z that can describe most
majority of information contained in X. In our case, p(xi) = ni/

∑
i ni where ni

is the amount of vacant taxis in cell i. Based on our experiment, in turns out
that a certain amount of historical data carried by Z is adequate to characterize
X. As an example, Fig. 4(a) shows the value of I(X;Z) as Z continues to carry
more historical data (in days). The value of I(X;Z) converges around 40 days
of historical data. Since I(X;X) is equal to H(X) (self-information), the result
implies that I(X;Z) ≈ I(X;X) = H(X) when at least the last 40 days of data
has been taken into account. In the other words, the last 40 days of data is ade-
quate to describe the entire data. Figure 4(b) and (c) show similar distributions
of vacancy derived from the entire data and the last 40 days, respectively. This
example is one of the taxi traces in our dataset.

(a) Mutual information value that converges as the number of days in
historical data increases

(b) Distribution of entire data (c) Distribution of retained data before
convergence (40 days)

Fig. 4. A sample from Taxi ID #9 of convergence of mutual information values and
distributions of entire data as well as retained data of recent 40 days. The color shade
represents the value of the distribution over different grids.



5 Experimental Results

To test the performance of our predictive model, the first 30 days of data is
used for training the model while the rest of the data (77 days) is used as a
testing set. A prediction of the number of vacant taxis is made for the next 24
hours (one for each hour slot – 24 predictions are made for each testing day)
for each grid cell. The errors are then computed and used to adjust the later
predictions (as described in Sect. 4.2). The testing data will sequentially become
training data after each prediction has been made. Adequacy of historical data
is detected each day of testing (as described in Sect. 4.3) and the training set
is then updated accordingly. To detect the convergence time, we use a method
described by Phithakkitnukoon and Dantu [14] with threshold of 0.02.

During the experiment, the absolute error is computed as the absolute dif-
ference between the actual and predicted amount of vacant taxis, i.e. |ŷ − y|.
The cumulative error is computed over all grid cells and shown in Fig. 5. To
show the improvement of the predictor achieved by the error-based learning and
detection of adequacy of data, in Fig. 5, cumulative errors of the model with (full
model) and without these features (baseline model) are shown, where clear im-
provement of about 10% in error can be observed. The uniform and linear weight
functions are used (with β = 5) where both functions yield similar performance.
The overall error per grid cell is shown in Fig. 6 where cells in blue, yellow, and
red have error range of 0–1, 1–2, and 2–3 taxis, respectively. The higher error
cells seem to be clustered in commercial and touristic areas while lower error
cells are spreading gradually. Overall, the errors are in the range from zero to
three taxis, which is considerably promising. In the other words, the reliability
of each prediction is ±c where c = 1, 2, and 3 if the cell is blue, yellow, and red,
accordingly.

Fig. 5. Cumulative error over days in testing period. The full model with the error
adjustment and adequacy of data outperforms the baseline model.



Fig. 6. Error rate in different grid cell. Error ranges are 0–1, 1–2, and 2–3 taxis, which
are represented with blue, yellow, and red respectively.

6 Conclusions

With the vision of smart cities, which is an application of concept and devel-
opment in AmI, here we take the first and essential steps toward building a
map-based service platform that allows access to real-time information about
the state of taxi transportation as well as predictions regarding its future state.
This will be useful for taxi service providers, transportation management, as well
as taxi users. In this paper, we develop a framework for predicting the number
of vacant taxis in an area based on time of the day, day of the week, and weather
condition. Our predictive model is based on Bayesian classifier with a sequen-
tial error-based learning algorithm and a mechanism for detecting the adequacy
of historical data using information theory’s mutual information. Based on 150
taxis in Lisbon, Portugal, our model is able to predict (per hour) accurately
with the overall error of slightly over 0.8 taxis per 1x1 km2 area. As our future
direction, we will continue to find ways to improve our framework such as by
using different weight functions (e.g. exponential, sigmoid), weight bandwidth,
and exploiting multi-source data fusion (combing data from different sources e.g.
mobile phone, bus, fleet). A larger dataset will also be obtained (from Geotaxi)
for our future development.

Nonetheless there is a number of limitations of this study that we are aware
of as following:

– The sample size of 150 taxis may not be the true representative of the whole
taxi population. It would be interesting to see how our framework performs
with a larger sample size.

– The grid size is relatively large and may not be realistic for individual users
who are particularly interested in the prediction within a smaller area. In
this study, the grid size is designed to compensate the taxi sample size that



we have. With a larger sample size, smaller grid size can be implemented
with the same developed framework. Nevertheless, the current grid size is
still useful for taxi service management and urban/transportation planning.

– The weather condition is assumed to be the same throughout the day. For
example, if the record shows that September 1st, 2009 was a sunny day, then
the weather condition is assigned to be sunny for entire 24 hours, which may
not be true. Nonetheless, we do not anticipate a large change in the overall
result if we had accounted for the change of weather condition during day.
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