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Abstract

This study explores the effects that the weather has on people’s everyday activity patterns. Temperature, rainfall, and wind
speed were used as weather parameters. People’s daily activity patterns were inferred, such as place visited, the time this
took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages
information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at
eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when
conditions are calm (non-windy). When compared to people’s regular activity patterns, certain weather conditions affected
people’s movements and activities noticeably at different times of the day. On cold days, people’s activities were found to
be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed
between 10AM and midnight on rainy days, with people’s activities found to be most diverse on days with heaviest rainfalls
or on days when the wind speed was stronger than 4 km/h, especially between 10AM–1AM. Finally, we observed that
different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban
infrastructure to characterize areas, we found strong correlations between weather conditions upon people’s accessibility to
trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of
daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban
dynamics.
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Introduction

People habitually carry their mobile phones with them much of

the time as this pervasive technology offers its users a means for

constant and available communication as well as personal

entertainment. However, the accompanying mobile phone can

also provide researchers with an efficient tool for capturing human

mobility pattern. Through this, researchers have a unique

opportunity to get a better understanding of the individual as

well as social behaviors that collectively shape our society. Along

with the logs of incoming and outgoing calls, telecom operators

can also capture people’s phones movement, as the phone move

through the ubiquitous network of towers. This transforms the

phone into individual life loggers, giving longitudinal records of

personal mobility while offering unprecedented fine-grained data

at the aggregate level. This can give researchers a glimpse of

various dimensions of human life. For example using mobile

phones to study social structure [1], how an individual’s diversity

of social network can lead to greater personal economic

development [2], and how weather affects people’s use of phone

calls to connect with others [3].

Various researchers have used location traces of connected

cellular towers of mobile phones to study human mobility, which is

important for urban planning and traffic engineering (e.g.,

[4][5][6][7][8][9][10][11]). Several aspects of human mobility

have been explored and described. For example, human

trajectories show a high degree of temporal and spatial regularity

with a significant likelihood of returning to a few highly visited

locations [4]. Trajectories of human mobility follow the principle

of exploration and preferential return, which governs the way

people explore new places while often returning to the previously

visited locations [5]. Others try to predict individual mobility by

examining phone location traces data (i.e., phone movement) in

conjunction with datasets containing geographical features such as

point of interest (POI) and land-use information [6]. Despite the

differences in people’s travel patterns, there is a strong regularity in

their mobility on a regular basis, which makes 93% of people’s

whereabouts predictable [7]. Developing an understanding of
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mobility patterns (through phone location trace data) has helped

with detecting the outbreak of mobile phone viruses [8],

comparing people flow between cities [9], identifying commuting

patterns [10], and understand the geography of social networks

[11].

These emergent studies of mobility have mainly focused upon

modeling, predicting, and analyzing human mobility data between

cities. However, these approaches often miss out on the richer

context of mobility, such as the type of activities that people might

be engaged with at the locations they travel to. After all, people

move between places in the city for different purposes. Besides

travelling between home and work, they are also engaged in

activities related to the place they visit, for example, eating in a

restaurant, shopping or browsing in a mall, and jogging in a park.

Thus, developing methods to help us infer the types of activities

associated with different public places can offer a richer

characterization of people’s daily activity patterns, which has

many potential benefits, such as facilitating urban design and

management. In this paper, we describe an approach to

characterize human daily activity patterns using detailed location

traces of mobile phones and spatial profiles. To build upon, and

extend a previous investigation that demonstrates how weather

conditions could impact people’s mobile social interactions, this

investigation shows how we can glean further insights into people’s

behavior with regards to their daily activities by looking for

correlations with detailed information about weather conditions.

After all, research has shown that weather can affect people’s

behaviors such as their mood [12][13] thermal comfort level

[14][15], and social interaction [3]. The weather can also

influence traffic demands, and how we travel [16][17][18], public

health [19], crime rates [20], and even stock prices [21][22]. Thus,

this paper describes our investigation into how weather shapes

people’s patterns of mobility and the associated activities in the

Tokyo metropolis of Japan. We will refer to this area as Tokyo for

the rest of the paper.

Methodology

This section will describe the datasets used and the analysis

carried out in this study. Given that the cities we live in are

increasingly associated with unprecedented amount of data that is

being produced and capture, we will demonstrate how we analyze

some of these datasets to reveal correlations and hidden patterns of

inhabitants in a large metropolis such as Tokyo. Through this, we

hope to produce knowledge that can inform better urban planning

in ways that are responsive to the needs of its inhabitants.

Datasets
We used three datasets in this study. The first dataset is the GPS

location traces of mobile phone users in Tokyo. The data was

collected for a full calendar year from 1st August 2010 to 31st July

2011 during which the location of each mobile phone user was

recorded continuously. To reduce battery consumption, the

accelerometer was used to detect periods of relative stasis during

which power-consuming GPS acquisition functions can be

suspended. The sampling rate thus varied with the user’s mobility.

However, the rate of sampling did not exceed once every five

minutes.

A leading mobile phone operator in Japan provided this mobile

phone GPS dataset. In particular, the dataset was derived from

mobile phone users who registered for location-based services. The

location information was sent through the network and used to

perform specific analysis from which certain services were then

provided for the registered users, as shown in Fig. 1. As part of this

service, the mobile phone users were aware that their locations

were being recorded. Furthermore, to preserve user’s privacy, the

dataset was completely anonymized by the company. Each entry

in the dataset included: unique user ID, position (latitude,

longitude), timestamp, altitude, and approximated error (i.e.,

,100 m, ,200 m, or ,300 m). This dataset provided finer

grained location traces than regular mobile phone call detail

records (CDRs) in which the user’s location is recorded only when

the connection to cellular network is established e.g., making/

receiving a call and sending/receiving text message. As an

example, Fig. 2 shows location traces of a mobile phone user.

The second dataset is the weather conditions of Tokyo. This

information was collected from Metbroker [23]. MetBroker

currently provides access to twelve databases of information

collected from seven different countries. It is mainly used to supply

important input for agricultural models but the information is also

useful for our investigation. MetBroker is a legacy weather

database, which provides seamless integration of sensor network

from different weather stations with a standard format. Hence, it is

a reliable data source used by researchers. In this study, hourly

information of the temperature (degree Celsius), rainfall (millimeter

per hour), and wind speed (kilometers per hour) of Tokyo from 1st

August 2010 to 31st July 2011 were gathered from six different

weather stations – their geographical locations are shown in Fig. 3.

Monthly statistical means and standard deviations of each weather

parameter during the time of the analysis are shown in Fig. 4.

The third dataset used in this study is the national phone

directory (Yellow Pages) data collected from Telepoint [24]. About

28 million addresses nationwide are geocoded (latitude, longitude)

and the information is updated every two months. The data from

October 2010 was chosen because this was the most recent update

of the database for the period chosen for this study. These

addresses were grouped into 14 categories. However, we only used

eight of the categories that are associated with activities that people

engage with within these 52 municipalities. The other categories

were related to residential categories, empty spaces, agricultural

fields, etc. This was achieved using the same approach we had

described in our previous work to construct the Activity-Aware Map

[25]. This involves categorizing each 250 m-by-250 m grid cell

using the Weight-Area method, i.e., each cell is assigned the most

probable activity, i.e., the most dominant activity in the cell based

on space profile category. The (most popular) space profile

categories and their corresponding activities are shown in Table 1.

Based on the Yellow Pages information, a map that presents most

probable activities in different cell areas were constructed. A

partial view of Tokyo’s activity map can be seen in Fig. 5 where

activities are in different colors.

Analysis
A mobile phone has become a necessity of the modern era and

an integral part of our everyday lives. This study takes the

advantage of its pervasive use to capture people’s mobility and

their daily activity patterns. With the detailed location traces of

mobile phone users, the mobility pattern of each mobile phone

user can be extracted i.e., trajectories of movements and

prolonged stops. When people are not commuting, and are at

stops, they are most likely involved in some activities. Thus besides

being at home, or at work, they could be eating at a restaurant,

shopping in mall, sitting in a park, and so on. Therefore in our

analysis we assumed that an activity (other than those carried out

at home or at work) was engaged only during a ‘stop’. To segment

these traces into individual trajectories so that daily mobility

pattern of each individual can be identified, we describe here our

basic algorithms to extract trips and stops.

Weather Effects on People’s Activities
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Figure 1. Overview of data collection process.
doi:10.1371/journal.pone.0081153.g001

Figure 2. An example of a mobile phone user’s location traces.
doi:10.1371/journal.pone.0081153.g002
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Let X represents a set of sequential traces of the user such that

X~fx(1),x(2),x(3),:::,x(i),:::g where x(i) is the ith location of the

user. A stop can be identified as a series of locations in which the

user stays in a certain area for a sufficiently long period of time. As

each position i contains location information (lat, long) and

timestamp (t) i.e., x(i)~(lat(i),long(i),t(i)), a stop is thus regarded

as a sequence of positions fx(k),x(kz1),x(kz2),:::,x(kzm)g
where the distance between any any positions is less than the

spatial threshold Sth i.e., distance(x(i),x(j))vSth for

i,j[fk,kz1,kz2,:::,kzmg, and time spent within the location

is greater than the time threshold Tth i.e., t(kzm){t(k)wTth.

The position x(k) thus becomes the last position of the previous trip

while x(k+m) becomes the first position of the next trip.

Once the ‘stops’ have been identified, the home and work

locations of each user can then be estimated as the locations of the

most frequent stop during the night (10pm–6am) and day hours

(9am–5pm), respectively. This estimation approach was found to

be fairly reasonable as the result of the estimated home locations

was comparable (R2&0:8) with the area population density

information of the 2006 census data [26] (as shown in Fig. 6), and

the average computed commuting distance of 24.34 km based on

the estimated home and work locations was reasonably close to

26 km of the average commuting distance according to the census

data [26]. Based on the above algorithm, we were able to gather

31,855 subjects (from the dataset provided to us) whose home and

workplace were within the Tokyo metropolis.

Identification of stops, in addition to home, and work locations

for each subject then allowed us to infer people’s daily activity

pattern, which was defined as a series of most probable engaged

activity throughout a day. The daily activity pattern for each

subject was constructed using a similar approach to our previous

study using cell tower-level location traces of mobile phone users

[25]. However, with a higher level of granularity of the data in this

study, we were able to better identify the most probable activity for

each hour (as shown in Fig. 7). Instead of using three-hour time

windows as in [25], we were able to interrogate the data for every

hour of the day, to infer the predominant activity during the hour

according to the series of stops and categories of visited places for

each subject.

Figure 3. Locations of weather stations from which the data was gathered for the study. The area considered in this study is enclosed by
highlighted contour line.
doi:10.1371/journal.pone.0081153.g003

Figure 4. Monthly weather conditions in Tokyo during the period of the analysis.
doi:10.1371/journal.pone.0081153.g004
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Using inferred daily activity patterns, we then further investi-

gated the influence of the weather on people’s mobility and their

daily activity patterns. We used various weather parameters such

as temperature, rainfall, and wind speed. Our data analysis explored the

influence of each of these weather parameters upon people’s

mobility in terms of duration of stops and daily activity patterns over

space and time.

Results

Although certain weather parameters depend upon others, we

considered the effects of each weather parameter separately on

people’s mobility and activity patterns in this study. The following

results show how different weather parameters correlate to

people’s mobility and variation in activity patterns over space

and time.

Weather effects on mobility and stop durations
People travel for many different reasons. It can be for regular

purposeful activities such as to go to work, or to shop, and it could

also involve leisurely activities, such as to dine out, to socialize, or

for vacation. Understanding the collective mobilities that make up

the urban dynamics is important for particular city authorities as it

can better inform urban planning and logistics for transportation.

Given that the weather has been found to have significant

impact on a number of phenomena related to human behavior, we

first wanted to investigate how the weather impacts people’s

mobility. Therefore we examined the statistical distribution of stop

duration for different weather parameters. To allow us to more

easily discern any emergent patterns we divided each weather-

related parameter into a set of ranges, or bands. Based on the

climate history of Tokyo (Fig. 4), temperature was considered

between 25uC and 35uC, divided into four bands, each with a 10-

degree span (25uC to 5uC, 5uC to 15uC, 15uC to 25uC, 25uC to

Figure 5. Partial view of Tokyo map in which most probable activities were inferred according to the yellow-pages information for
each grid cell area.
doi:10.1371/journal.pone.0081153.g005

Table 1. Space profiles categories and corresponding activities.

Space profile category Examples of inferred activities

Eateries Consuming food and/or beverages

Retail shops/malls Window shopping, shopping, leisure browsing

Parks/Rivers Leisure

Financial institutions/Employment Financial transactions

Public transportation Catching trains or buses

Nightlife retail/entertainment Pubs/bars activities or nightlife entertainment

Religious institutions Religious related activities

Educational institutions Education related activities

doi:10.1371/journal.pone.0081153.t001
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35uC) Rainfall was divided into four bands: no rain (rainfall

= 0 mm) and the rest was evenly divided into three bands in the

range from 0 mm to 15 mm (0–5 mm, 5 mm–10 mm, 10 mm–

15 mm); windspeed in four bands: 0–2 kmph, 2–4 kmph, 4–

6 kmph, and stronger than 6 kmph.

We would like to also note that although other researchers have

often used the number of visited locations to characterize human

mobility (e.g., [4][5][7][11]), it would not be an appropriate

approach in this study given that we wanted to compare people’s

mobility across different bands of weather for each weather

parameter and in this investigation, each band has different length

of time observation.

The statistical distribution of the stop duration for each band of

each weather parameter was computed as a probability mass function

(pmf). This pmf is basically a normalized histogram on the

logarithmic scale, where normalization allows comparisons across

different bands of each weather parameter, and a logarithmic scale

was used because of the nature of the statistical distribution of the

stop duration found in this study as shown in Fig. 8(a). In addition,

pmf of stop duration for home and workplace are shown in

Fig. 8(b) and 8(c) respectively.

The results in Fig. 9 show that the pmf for the temperature band

25uC to 5uC is higher than other bands when the stop duration

that is two hours or more. The result is statistically significant

with p-value = 3.061661024, based on Fisher’s exact test with the

total number of stops in very cold weather (temperature ,5uC)

= 262,803, number of stops in very cold weather that are longer

than two hours = 188,905, number of stops in other temperature

bands = 2,757,720, and number of stops in other temperature

bands that are longer than two hours = 1,705,941. In other words,

when compared to other temperature bands, there is a noticeably

higher likelihood that people make stops that are two hours or

longer on very cold days. Conversely, for days with weather above

5uC, people are more likely to make stop durations that are less

than two hours. As guidance on variability, Fig. 9(b) shows the

difference in probability measures when comparing other temper-

ature bands against (25uC to 5uC)-band i.e., subtracting

probability measure of other bands from (25uC to 5uC)-band.

Hence, positive difference implies that (25uC to 5uC)-band has a

higher probability and vice versa. Rainfall, on the other hand, does

not appear to influence how long people choose to stop (Fig. 10).

On the other hand, wind speed (similar to temperature), exhibits a

correlation to stop duration. There is a higher likelihood

(higher pmf) of stop duration of two hours or more for relatively

calm days where wind speed is between 0–2 kmph (Fig. 11).

Statistical significance test yields p-value = 1.82961029 with the

total number of stops in calm weather (wind speed ,2 kmph)

= 1,855,467, number of stops in calm weather that are longer than

two hours = 1,230,570, number of stops in other wind-speed

bands = 1,489,735, and number of stops in other wind-speed

bands that are longer than two hours = 867,471. Thus, besides

work and home, people don’t often make stops of about two hours

or longer. The exceptions are on very cold days or on relatively

calm days.

Furthermore, through the Activity-Aware Map approach of

using Yellow Pages information, we set out to infer the activities

for stops that people made which were two hours or longer. By

discounting locations identified as home and workplace, and using

the categories we computed in Table 1, we found that people spent

about 80% of their longer stops at areas that predominantly

consist of eateries or food outlets such as restaurants, cafès, and so

on, and 17% at areas that predominantly consist of retailing, such

as shops, shopping mall, and so on when the temperature was

Figure 6. Comparison between our inferred residential municipality population of the mobile phone user subjects and the actual
municipality population obtained from census data.
doi:10.1371/journal.pone.0081153.g006

Figure 7. Hourly time frame was used to capture daily activity
patterns.
doi:10.1371/journal.pone.0081153.g007
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between 25uC and 5uC. Likewise, when the wind was less than

2 km/h it was observed that people spent about 88% of their

longer stops at areas of eateries and food outlets, and 11% in areas

of retail and shopping. These results suggest that in a cold or calm

(not windy) day, people tend to take their time having meals,

snacks, and/or beverages, and to a lesser extent, spending time on

shopping-related activities in areas of retail or in a shopping mall,

perhaps buying things or simply window shopping.

Weather effects on activities at different times of the day
Human mobility is periodic and hence highly predictable [4].

Our daily activities are often pre-scheduled as most of us are in the

work-life routines. With the daily routine such as going to work in

the morning, having lunch around noon, shopping in the

afternoon, and going to a pub in the evening that most of us

struggle to break, the question is: does the weather have any impact on

such a daily activity patterns? To find out if the weather affects our

daily activities and to what extent, we examined the weather

impact across different hours of the day. The entropy of activities

was used to capture the variation in activities engaged by the

subjects. In information theory, entropy (H(X)) is a measure of

uncertainty or randomness associated with a random variable and

it can be computed as follows [27]:

H(X )~{p(xi)
Xn

i

log2 p(xi), ð1Þ

where X is a random variable with n outcomes fx1,x2,:::,xi,:::,xng
and p(xi) is a probability of outcome xi.

Entropy value was computed for each hour of the day where X

represents a set of activities engaged by each of n subjects in that

particular hour i.e., variables xi presents activity of the subject i.

The probability p(xi) was then computed as a ratio of the number

of times the activity xi was observed in the hour across all n subjects

to the total number of subjects (which is n = 31,855 in our case).

The entropy was chosen in this investigation because it was

suitable for categorical variables, which represented activities in

this study. A higher entropy value implies a higher randomness in

activities among the subjects. Entropy equals to zero means no

randomness i.e., all activities engaged by subjects are the same.

With the activity pattern inferred in the same way as described

earlier for each band of each weather parameter, the results show

that different weather conditions do have an influence on people’s

activity patterns throughout the day. As Fig. 12 illustrates,

regardless of the day’s temperature range, entropy values show a

dramatic decrease between 8AM and 9AM, where there is

Figure 8. Probability mass function of stop duration of subjects.
doi:10.1371/journal.pone.0081153.g008

Figure 9. Probability mass function of stop duration under different bands of temperature and probability difference compared
with the temperature band of less than 56C.
doi:10.1371/journal.pone.0081153.g009

Weather Effects on People’s Activities
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generally low variation in people’s activities. Given the timeframe,

this may likely be due to the fact that most people are traveling –

on their way to work. After 10AM, the effect of different

temperature bands becomes more distinct. The effect of the

temperature band 25uC to 5uC stands apart, and in opposition to

the other temperature bands. For this band, entropy values

increases from 10AM reaching the highest between 2PM and 6PM

before decreasing (see Fig. 12). By 10PM the entropy value for this

band is still higher than that of the other bands. In other words, on

very cold days (25uC to 5uC), people’s activities are found to be

most varied from 10AM onwards.

For the other temperature bands, (temperature bands above

5uC), the opposite effect is observed. The least varied activities are

observed for the temperature band of 15uC and 25uC, especially

between 12PM and 5PM. In comparison, the temperature band of

5uC to 15uC shows slightly higher level of entropy values, followed

by the temperature band between 25uC and 35uC. In other words,

for the three temperature bands that are above 5uC, people’s

activities show the least variations within the relatively comfortable

temperature conditions of 15uC to 25uC, while in the highest

temperature band of 25uC to 35uC, people show more variations

in their activities. In fact, on days when the temperature is 5uC,

people’s activities begin to increase in variation after 5PM well into

the night. Of these, the warmest days (25uC to 35uC) appears to

show the highest variation in activities at night. In other words,

people tend to engage in a wide range of different activities on very

warm nights.

If very cold days lead to high variations in people’s activities,

rainfall has a similar effect. In fact, the heaviest rainfall band

(10 mm–15 mm) shows, an entropy level that is even higher than

that of a very cold day. In other words, people’s activities are the

most varied on days with the heaviest rainfall. Again, just like that

Figure 10. Probability mass function of stop duration under different bands of rainfall and probability difference compared with
the band of rainfall = 0 mm.
doi:10.1371/journal.pone.0081153.g010

Figure 11. Probability mass function of stop duration under different bands of wind speed and probability difference compared
with the wind speed band of less than 2 kmph.
doi:10.1371/journal.pone.0081153.g011

Weather Effects on People’s Activities
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for temperature, entropy values show a dramatic decrease

between 8AM and 9AM, regardless of the amount of rainfall.

This picture changes after 9AM (Fig. 13). One band: no rainfall

(rainfall = 0 mm), stands apart from the rest. People’s activities

decreases in entropy values (i.e., decreases in variation of activities)

on dry days, from 9AM onwards, reaching the lowest entropy

values between 3PM and 4PM.

However, rainfall (when rain is .0 mm) shows an opposite

trend to dry days. On days that receive rainfall we observe an

increase in entropy values from 9AM, i.e., increase in variation of

people’s activities. In fact, the wetter the day (i.e., the higher the

rainfall), the more varied people’s activities tend to be. For

example, in the highest rainfall band (10 mm to15 mm), we

observe that activities tend to be the most varied, especially

Figure 12. Entropy values across time of the day under different bands of temperature.
doi:10.1371/journal.pone.0081153.g012

Figure 13. Entropy values across time of the day under different bands of rainfall.
doi:10.1371/journal.pone.0081153.g013

Weather Effects on People’s Activities
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between 3PM–7PM. Lower rainfall also lead to varied activities

although not as much over the day.

The effect of wind is slightly more different during the day from

that of temperature and rainfall. In fact, we observer that wind

speed has the most varied effect on people’s activities. When wind

speed is above 4 kmph, we generally see higher entropy values

(Fig. 14). This is most obvious with the highest wind speed band

(when it is 6 kmph or greater). This has a profound effect on the

entropy values, especially from 11AM10PM. On days with such

high wind speed, people activities are highly varied, especially

within that time frame. On the other hand, on days with the

highest wind speed band, there is a dramatic drop in entropy

values between 8AM and 9AM. Thus, on high wind mornings,

there is a very low variation in people’s range of activities.

However, relatively calm days (0 kmph to 2 kmph) do not

consistently show lower entropy values. Between 1PM and 8PM

it is days with wind speed between 2 kmph and 4 kmph that shows

the lowest entropy values. In other words, on days with slight

winds, people’s activities show the least variations, especially

between 1PM and 8PM.

Weather effects on activities in different areas of the city
The impact of weather upon people’s activities, and to what

extent it influences people’s choice of activities may also depend

upon where they live in Tokyo. This is particularly important

given the size of Tokyo metropolis. This could involve geograph-

ical features of the urban landscape such as shopping malls,

hospitals, places of worship, parks and so on. In large metropolises,

it can also involve public transport networks.

To observe how the weather impacts on different areas of

Tokyo, the entropy was again used as a measure of the variation in

activity patterns. This time, we computed the weather’s impact as

a difference in entropy values between the regular and irregular

weather conditions for each of Tokyo’s 52 municipalities. Based on

the results from the previous section on temporal weather effects,

we defined the regular condition for each weather parameter as

5uC to 35uC for temperature, 0 mm for rainfall, and 0 to 4 kmph

for wind speed. The irregular condition for each weather

parameter is thus 25uC to 5uC, .0 mm, and .4 kmph for

temperature, rainfall, and wind speed, respectively.

The results, which can be seen in Fig. 15, 16, and 17, show that

each weather parameter has varying impact across different parts

of Tokyo at different times of the day. Figure 15 shows how

temperature impacts people’s normal activity pattern in different

parts of Tokyo. In addition, the impact varies for different times of

the day. For example, we can see in Fig. 15(b) that weather

impacts significantly upon people living in the western region of

Tokyo between 4AM and 6.59AM, and also between 10AM and

12.59PM, when compared to other regions. However between

1PM–3.59PM, the impact is more diffused across all of Tokyo.

The impact of rain on people’s normal activities is most

discernible across all areas of Tokyo between 4AM–6.59AM

(Fig. 16(b)) and gradually decreasing in impact between 7AM–

9.59AM (Fig. 16(c)). Windy days show particularly interesting

patterns, again, especially in the western region of Tokyo (Fig. 17)).

Firstly, while wind generally impact people’s normal activities in

most areas of Tokyo, especially between 4AM–9.59AM, this

impact is not as significant in the western region. However the

impact of wind becomes more prominent (significantly more

profound than other areas of Tokyo) from 10AM onwards peaking

between 4PM–6.59PM.

The varying impacts described above could be due to a number

of influential factors. One of them is the ability for people to move

around under different weather conditions. Therefore, we chose to

further investigate these findings in light of people’s accessibility to

public transportation. For each municipality, we computed the

distance between the subject’s home location and the nearest

public transport hub as a measure of the accessibility of public

transport. As buses and trains are the main public transports in

Tokyo, bus stops and train stations were thus chosen as public

transport hubs in this investigation.

Figure 14. Entropy values across time of the day under different bands of windspeed.
doi:10.1371/journal.pone.0081153.g014
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It has been shown that people’s activities in Tokyo are strongly

shaped by their ability to access trains [28]. However, in some

areas of Tokyo, the distribution of train stations may not be as

dense, people are further away from available train stations. In

fact, there is one town in the furthest west that has only one train

station with no one in our study population living within 2 km of

that train station. So we wanted to see if people’s proximity to a

train station affects their choice of activities under different

weather parameters.

Figure 15. Temperature impact (change in entropy between normal and abnormal temperatures) on daily activity patterns across
different municipalities.
doi:10.1371/journal.pone.0081153.g015

Figure 16. Rain impact (change in entropy between normal and abnormal temperatures) on daily activity patterns across different
municipalities.
doi:10.1371/journal.pone.0081153.g016
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Figure 17. Wind impact (change in entropy between normal and abnormal temperatures) on daily activity patterns across different
municipalities.
doi:10.1371/journal.pone.0081153.g017

Figure 18. Relationship between the weather impact and accessibility of pubic transportation.
doi:10.1371/journal.pone.0081153.g018
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The results (Fig. 18) show that the further away the person is

from a train station, the bigger the effects that particular weather

pattern has on people’s choice of activities (R2 = 0.7,0.8). On the

other hand, people are never far from bus stops (average distance

= 215 m). Thus, in terms of buses, people’s proximity to bus stops

appears to show that the varying weather patterns do not

discernibly affect people’s choice of activities.

We also performed the same analysis for people’s proximity to

other elements of urban infrastructure (i.e., hospitals, shopping

malls, parks, and night clubs) but did not observe strong

correlations. The R2 values are shown in Table 2.

Conclusions

The growing availability of big data offers significant potential

for researchers to better interpret human behavior and gain

insights into various domains. In this study, we analyzed detailed

location trajectories of 31,855 mobile phone users in Tokyo for

one full calendar year. Daily activity patterns of mobile phone

users were estimated based on their location traces and the yellow-

pages information. We were particularly interested in the effect of

the weather that has on people’s daily activity patterns in this study

where temperature, rainfall, and wind speed were considered as

weather parameters.

While we found interesting variations on how different weather

parameters affects people’s mobility and activities in Tokyo, we

will summarize the most significant findings.

On days that are very cold (25uC to 5uC), or calm (i.e., wind

speed is less than 2 km/h), we found that people were more likely

to stay longer and spend more time at areas that consists of eateries

and food outlets such as restaurants, cafès, and so on, and (to a

lesser degree) at shopping areas with retail outlets, shopping malls,

and so on. Moreover, on very cold days, we found that people’s

activities were more diverse during the daytime, especially after

10AM, and showing greatest variations between 2PM and 6PM.

Similarly, we found that people’s activities were more diverse on

rainy days (especially between 10AM-midnight) as well as on days

when the wind speed was stronger 10AM–1AM when wind speed

was stronger than 4 km/h (mean = 2.6 km/h). Finally, we

observed different weather impacts for different geographical

areas. It appears that the furthest western region of Tokyo shows

the most distinct interruption by very cold weather, significantly

disrupting its inhabitants’ normal activities in the early mornings

and before mid-day. By characterizing various areas by people’s

accessibility to urban infrastructure (i.e., distance to the nearest

accessible point), we found strong correlations between the impact

of weather and the local inhabitants’ accessibility to train stations.

There are nevertheless some limitations to the observations we

present in this study. There could be slightly differences in weather

conditions that people experienced in areas that were not near the

weather stations considered in this study, which may play a role in

the findings. How people actually feel about the weather is also

subjective and remains an open question, especially when dealing

with the effects of weather on such a high level and at such a large-

scale. Participatory mobile sensing (e.g., [29]) perhaps is one of the

promising approaches. Although there is an interdependency

among weather parameters and the way that people experience

the overall weather condition, we did not consider this complexity

in the current study. Future studies can take this into consideration

in order to obtain a more detailed understanding of the overall

effect of the weather. The effect of important social events such as

New Year and Christmas or emergency events such as earthquake

were not considered in the current study, which could possibly

have some influence on the findings. This too remains to be

explored in our future studies. Finally, due to sparseness of GPS

data and resolution of the spatial profile characterization used in

this study, the activity patterns inferred based on location traces

and Yellow-Pages information may not represent the actual

activities in reality. Nonetheless, we believe that the findings of this

study to a large extent represent a new knowledge about the

influence of the weather that it has on our behavior, in particular

the patterns of our physical activities.

Having the ability to combine large datasets to discern

particular patterns in human behavior in large metropolises will

become more important as the global trend towards urbanization

continues. With more people moving to cities, and as cities grow;

the capacity to be able to provide a whole range of services,

effectively and efficiently, as well as maintaining the safety of its

inhabitants is just one of the major challenges facing urban

planners. This paper provides an example of how we can begin to

use big data in ways that can provide richer contexts into people’s

behavior and activities so as to add to our understanding of

inhabitants in a big city. By developing ways that can help us infer

not only mobility but also where people stop, and what people do

(besides being at home and at work) under particular weather

conditions, we can imagine how such information can inform a

whole range of decisions. On an immediate level, this includes the

scheduling of public transportation, the planning of future

transport hubs, the staffing levels of retail/restaurants, the opening

times of such services, and so on. Knowing where people

concentrate in light of weather patterns can also be used to

predict how security and emergency services can be best deployed.

Of course, such capacity to obtain live models and create

predictive models of inhabitants in large metropolises can be

greatly improved through greater access to better quality and

higher resolution data, and by refining our approaches as well as

computational efforts.

This approach also opens up to future efforts whereby

researchers can combine different sets of data to help mitigate

some of the problems that beset rapidly growing metropolises

around the world, such as to help deal with wastes, tackle

pollution, and even reduce crime by knowing where police

deployment is more useful and likely to be effective. As our

findings reveal, we believe that working with Big Data can quickly

reveal patterns and trends that offer great inference power to

shape people’s lives. However, it is through close collaborations

with other research disciplines such as urban planning, environ-

mental scientists, and sociologists, that we can truly realize the

Table 2. The R2 values representing the correlation between
the impact of different weather parameters and accessibility
of urban infrastructure.

Urban infrastructure Weather parameters

Temperature Rain Wind

Train station 0.744 0.810 0.735

Bus stop 0.451 0.133 0.110

Hospital 0.223 0.070 0.051

Shopping mall 0.073 0.194 0.142

Park 0.376 0.080 0.215

Night club 0.087 0.055 0.025

doi:10.1371/journal.pone.0081153.t002
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potential to support and enhance people’s lives in big metropolises

in positive ways.
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4. González MC, Hidalgo CA, Barabási AL (2009) Understanding individual

human mobility patterns. Nature 458: 238–238.
5. Song C, Koren T, Wang P, Barabási AL (2010) Modelling the scaling properties

of human mobility. Nature Physics 6: 818–823.

6. Calabrese F, DiLorenzo G, Ratti C (2010) Human mobility prediction based on
individual and collective geographical preferences. In: Proceedings of the IEEE

International Conference on Intelligent Transportation Systems. 312–317.
7. Song C, Qu Z, Blumm N, Barabási AL (2010) Limits of predictability in human

mobility. Science 327: 1018–1021.

8. Wang P, Gonzalez MC, Hidalgo CA, Barabasi AL (2009) Understanding the
spreading patterns of mobile phone viruses. Science 324: 1071–1076.
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