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Abstract. Principal component analysis (PCA) has been widely used in many 
applications. In this paper, we present the problem of computational complexity 
in prediction, which increases as more input of predicting event’s information is 
provided. We use the information theory to show that the PCA method can be 
applied to reduce the computational complexity while maintaining the 
uncertainty level of the prediction. We show that the percentage increment of 
uncertainty is upper bounded by the percentage increment of complexity. We 
believe that the result of this study will be useful for constructing predictive 
models for various applications, which operate with high dimensionality of 
data.   
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1   Introduction 

Prediction plays an important role in many applications. It is widely applied in 
various areas such weather, economic, stock, disaster (e.g. earthquake and flooding), 
network traffic, and call center forecasting. Several techniques and predictive models 
have been utilized to generate prediction such as regression analysis, Bayesian 
networks, Markov model, and neural network. These techniques have different 
computational costs associated with them. As more predicting event’s information is 
provided, the computational cost (and complexity in some predictive models) 
increases. Reducing the dimensionality of the input to the predictive model in order to 
lower the computational cost may also increase the uncertainty of the prediction. To 
avoid degrading the uncertainty of the predictive model while reducing its 
computational cost, in this paper we present an application of the PCA method as a 
solution to our problem. 

The rest of this paper is structured as follows. Section II carries out the main 
contribution of this paper. The paper is concluded in section III with a summary and 
an outlook on applying our finding to the future work. 



2 Applying PCA to Complexity in Prediction 

Prediction is a statement about the future observation. The actual future event does 
not always occur as its prediction. Hence there is an uncertainty associated with a 
prediction. The uncertainty of prediction can be measured using information entropy 
or Shannon’s entropy, which is a measure of uncertainty of a random variable [1] 
defined by (1). 
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where X is a discrete random variable, Xx∈ , and the probability mass function p(x) 
= Pr{X=x}. 

Cover, T. M., and J. A. Thomas [2] shows that the uncertainty of prediction of 
event X given the information Y is less than uncertainty of prediction of event X 
without given information about event X, 
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We can extend (2) to a scenario where there is more one known information about 
predicting event X. Since conditioning reduces entropy, (2) still holds for multiple 
given information, 
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Inequation (3) tells us that theoretically the more information about event X, the 
less uncertainty about predicting event X. This implies that one may collect infinite 
information about event X to make the optimal prediction in the sense of having the 
least uncertainty. 

In practical prediction problem, an infinite dimensional dataset is not available. 
However, there is a high dimensional dataset in which taking entire data will result a 
high computational complexity in prediction. It is desired to lower the dimensions of 
dataset while retaining as much as possible of the characteristics of the dataset in 
order to reduce the computational complexity in prediction. This can be achieved by 
applying the Principal Component Analysis (PCA) method. 

The PCA is a technique of multivariate analysis. It was first introduced by Pearson 
[3] in 1901 and developed by Hotelling [4] in 1933. The idea of PCA is to reduce the 
dimensionality of a dataset while retaining as much as possible of the variation 
present in the dataset. The PCA method composes transformation matrix from the set 
of input vectors containing correlated components to another set of vectors containing 
orthogonal and uncorrelated components. PCA reduces dimension of the dataset by 
keeping the most relevant information and discarding the statistically less relevant 
information from the multidimensional dataset. The PCA transformation is based on 
the autocorrelation matrix which is given by (4). 
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where n is the number of input vectors, Xj is the jth vector. 
Principal components are obtained by arranging eigenvalues corresponding to 

eigenvectors of matrix Rxx in order. The first principal component contains the largest 
percentage of the variation in the original dataset. The second principal component 
contains the second largest percentage of the variation in the original dataset and so 
on. The main idea of PCA is to reduce dimensionality of dataset to first m principal 
components. I.T. Jollife [5] suggests three types of rule for choosing m; cumulative 
percentage of total variation, size of variances of principal components, and the scree 
graph and the log-eigenvalue diagram. Choosing the number of principal components 
is not in the scope of this paper. Interested readers may find more information from 
[5]. 

By choosing the number of principal components m, one can construct a matrix P 
which is given by (5). 
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where Pj is the jth principal component. 
The PCA can also be visualized as a simple transformation from one domain to 

another by projecting original data points onto the new principal component axis 
where the first principal component contains the largest percentage of the variation in 
the original data points and so on. Figure 1 shows the original data points from X-Y 
axis to be projecting onto the principal component axis (PC1 and PC2).  
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Fig. 1. Example of projection of the data points onto the principal component axis. 

Since the first principal component contains the largest percentage of the variation 
in the original dataset, therefore range of the percentage of the variation in the original 
dataset that the first principal component contains (%Var(P1)) lies between 100/n% 
and 100% where n is the dimension of the original dataset. 
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The percentage of the variation in the original dataset contained in the first 
principal component has the maximum value of 100% when the original data points 
form a straight line. On the other hand, the percentage of the variation in the original 



dataset contained in the first principal component has the minimum value of 100/n% 
when the original data points form a perfect sphere cloud where the variation of the 
original data contained in the first principal component is equal to the variation of the 
original data contained other principal components. In general, having all features 
(dimension) of the data equally represent the overall data is very rare.  

Given a high n-dimensional dataset to predict event X with the computational 
complexity of O(n) and uncertainty of H(X|Y1,Y2,…,Yn), using the PCA method 
reduces the dimension of the data to n-k while increases the uncertainty to  
H(X|P1,P2,…,Pn-k), where Pj is the jth principal component. Thus, the complexity is 
reduced by (n-k)/n % while the uncertainty is increased at most by (n-k)/n % since 
%Var(P1) has lower bound of 1/n  and its equality holds if and only of all principal 
components contain the same variation of the original data (Eq. 6). Since the 
dimension of the data is reduced to n-k which means n-k principal components are 
retained, thus 
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This means that by applying PCA, percentage decrement of computational 
complexity (%↓C) is greater than and equal to the percentage increment of 
uncertainty (%↑H), 
 

     %↓C  ≥ %↑H,                                                 (8) 

which implies that using PCA can reduce the computational complexity of the 
predictive model while maintaining the uncertainty level of the predicting event as 
much as possible with its percentage incretion never be more than percentage 
decrement of complexity.   

3   Conclusion 

In this paper, we present an application of the PCA in the prediction. We show that 
the computational complexity of the prediction increases as the dimensionality of the 
dataset grows and in order to reduce computational complexity in prediction while 
maintaining the level of the uncertainty of prediction, the PCA method can be applied. 
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