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Abstract
Understanding crowd activities at large-scale and diagnos-
ing existing problems of planning on densely-populated
campus are fundamentally hard through traditional ways of
measurement and management. In this paper, we demon-
strate how to collect data from ubiquitous WiFi networks
(WLAN), and further to characterize the mobility of campus
residents by exploring time-frequency patterns with spatial
context. On the campus of Tsinghua University (where ev-
eryday nearly 60, 000 mobile devices appear in the public
areas of more than 110 buildings), we obtain large-scale
observations on physical activities, and provide insights for
better diagnosing of WiFi hotspots.

Introduction
The management and planning of densely populated ur-
ban areas usually face great challenges through traditional
ways with time-consuming process of data collection, out-
dated analyses, and sometimes subjective and anecdotal
arrangements. This is especially true for campuses, where
the activities of students and faculties are seldom measured
and analyzed at large-scale, let alone further used to guide
planning and possible improvements.

In the past decade, the ubiquitous WiFi infrastructure and
smart phones offer a great opportunity to study people’s
physical activities and interactions. On school campuses,

https://doi.org/10.1145/3123024.3124419


nowadays students and teachers usually study/work/live
with good WLAN coverage with their carry-on wireless de-
vices. Their usage of WiFi and mobile devices produces an
unprecedented wealth of information, leading to a long line
of research that focus on campus [2, 5].

In this paper, we characterize crowd mobility at Tsinghua
University, where a deployment of more than 2, 800 APs
gives essentially complete coverage across a diverse set
of 114 buildings. Based on the data collected from campus
WLAN, we are able to explore the following questions:

1. How do residents move around and spend their time
on campus?

2. What are frequent and recurrent temporal patterns of
crowd activities?

3. How do spatial contexts (buildings) impact physical
activities?

4. Are public facilities well utilized? What are their po-
tential problems?

Our large-scale measurement study sheds light on how to
analyze mobility traces with building context, and diagnose
potential WiFi deployment problems for better planning.

Table 1: Building Basic Information
Bvld. type area(m2) #AP

A cafeteria 9696 8
B gym 12600 19
C dorm 35668 84
D classroom 34045 115
E library 20000 50
F department 36780 121
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Figure 1: Pause time distributions.

Data Collection
The campus of Tsinghua covers an area of ∼4.4km2 on
which ∼45, 000 students and ∼12, 000 faculty and staff
members are living. By August 2016, there are 2, 890 Cisco
enterprise APs (access points) in 116 buildings on the cam-
pus (e.g., the basic information of 6 example buildings are
listed in Table 1.), providing a dense deployment in most ar-
eas. At peak, there are ∼20, 000 devices concurrently con-
nected to the campus WLAN. The total number of unique
devices surpass 60, 000 each day, which means on average
everyone uses at least one wireless device.

The ubiquitous enterprise WLAN on the campus allows
us to track the devices of the large resident population. As
described in [5], the mobility of each device is derived from
records of probe/rogue packet RSSI and connected RSSI
in sampled (with ∼5min interval) SNMP objects with the
connection history in full SNMP trap messages. No matter
whether a device is connected to the campus WLAN or not,
the mobility of the device can be determined as long as its
probe scan or data packets can be sensed by APs.

The “mobility" of a device is defined as its pause interval
and pause location at room-level. The mobility detection
algorithm described in [5] is training-free — The compli-
cated and costly procedure of absolute indoor positioning
is avoided. During a week of spring semester at Tsinghua,
69, 154 client devices appeared in the campus WLAN. The
pause time (the duration of a pause interval) distribution is
shown in Fig. 1.

Mobility Analyses
From the mobility traces of smartphones on the campus, we
try to explore the following questions by aggregating traces
together and conducting statistical analyses with spatial
contexts: Where do students spend their time? And how
their activities are different at different places?

The differences of indoor and outdoor activities lead us
to focus on activities of indoor scenarios on the campus.
Meanwhile, the heterogeneous usages — such as arrival
and departure flows — of buildings can be used as indica-
tors of spatial context. Then, we build a pause time model
based on the building types.

Indoor v.s. Outdoor
In general, human behavior inside buildings is quite differ-
ent from outside. There are less motions but more pauses
at indoor areas. Outdoor human mobility shows statisti-



cal resemblances to Lévy walks1 [3] which is also found in
similar mobility behavior of other wild animals like jackals,
spider monkeys, etc. As Fig. 1 shows, indoor mobility still
follows the scale-free (that in any scale human movement
has similar patterns) pattern of heavy-tailed pause time dis-
tributions, which is a feature of Lévy walks.

However, indoor mobility no longer follows past models of
outdoor mobility. In buildings, smaller area no longer leads
to shorter pause time as presented in outdoor cases. For
example, [3] shows that both flight length and pause time
decreases as the outdoor boundary is more confined. But
as shown in Fig. 1 (where the pause time distribution from
outdoor GPS traces on the Campus-I/NCSU in [3] is also
plotted), outdoor pause time on NCSU campus is much
shorter than pause time within buildings (much smaller ar-
eas than a whole campus) of Tsinghua.

At Tsinghua, mobility still follows the observation that mod-
ern humans spend roughly 90% of the time indoor. Mean-
while, 93% of the indoor time is in pause mode at 3.1 dif-
ferent spots all over the campus. As shown in Table 2, on
average the time spent in each building is around 210min,
while pausing 2.6 times for about 196min. We can see the
trend that most people are paused in the buildings for most
of the time.

Buildings restrict people into bounded areas. In buildings
people are less fluid and less sparse than their outdoor
states.Thus it is necessary to take a closer look at buildings
for better understanding of crowd activities.
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Figure 2: Arrival (upper green
field) & departure (lower red field)
flows, and total device number
(solid line) in the department
building FIT during a Wednesday.
(Aggregate bin width = 10min.)

1Levy walks are defined as random walk trajectories that are com-
posed of self-similar jumps, and consist of many short flights and occa-
sionally long flights. They are more diffusive than Brownian motion while
less diffusive than random-waypoint movement.

Building Types and Heterogeneous Activities
Most of the buildings on the campus have their own spe-
cial regular and significant temporal patterns through a long
period of time. In other words, each of them usually has a
fixed major usage. Thus depending on the general usages
and schedules of the building, we manually categorize the
buildings into 8 major types: administrative, cafeteria, class-
room, department, dorm, gym, library and others.

Before investigating indoor pauses and outdoor transitions
separately, we take an overview at the aggregated arrival
and departure flows of each building. E.g., in Fig. 2, flows
of arrival, departure and total number of smartphones (de-
rived from mobility traces) on a weekday the example de-
partment building FIT are shown.

To further understand similarity and differences of activi-
ties among buildings, in [5] we try to cluster buildings based
on the similarities between their flows over a long time. To
compare two time series of flow, we calculate cross cor-
relation 2 between them with lag |τ | ≤ 30min to derive
the similarity of two buildings. Then we apply a hierarchical
clustering on all the buildings. The results in [5] show that
same type of buildings are well clustered together. Building
types can be used as coarse labels for spatial context.

Visitors v.s. Occupants
Finally, we look back at the pause time distributions through
the categorization of building types. Dotted “WLAN” line
in Fig. 3 demonstrates the mountain range undulating pat-
terns of pause time — most types of buildings have peaks
in their tails far away from the power-law head around <
20min. These heavy peaks in the tails reflect the common

2Cross correlation (also known as sliding dot product or sliding
inner-product) can be defined as ρXY (τ) = E[(Xt − µX)(Yt+τ −
µY )]/(σXσY ) for series X and Y .



Table 2: Pause Statistics (one weekday).

The number of pauses, percentage of pauses to indoor time, total pause time (min),
total indoor time (min), number of paused spots.

(Averaged over all observations in buildings of each type.)
type #pause %pause pause(min) indoor(min) #spots

admin 2.60 92% 198.68 211.29 1.40
cafeteria 1.08 99% 48.74 49.13 1.29

classroom 1.64 97% 125.49 133.66 1.98
department 4.17 87% 242.92 268.09 2.27

dorm 2.48 91% 387.53 408.89 1.59
gym 3.27 87% 84.44 94.55 1.55

library 1.66 97% 198.47 201.58 1.60
ALL 2.64 93% 196.35 210.76 3.11

schedules, long-time usages, and frequent patterns of oc-
cupants/residents of the building as we partly saw in Ta-
ble 2. The peak at their heads around 10-20min, we con-
jecture, is caused by the short-time usage of visitors, ran-
dom process in the human walks similar to outdoor mobility,
and influenced by the building space properties (design,
architecture, location, environment, etc.).
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Figure 3: Pause time distributions
of building types.
Mixed normal fit of log10(pause time). The

x axis is labelled with original pause time,

using logarithmic bin size.

The multiple peaks of indoor pause time distribution can
hardly be fitted well using same simple heavy tail distri-
butions, e.g. Log-normal, Weibull, Truncated Pareto, etc.
which are widely adopted in the past works on outdoor
or general mobility. By our observation that most types
of buildings have long-term occupant usages and short-
term visitor usages presented by two main peaks in most
distributions of log10(pause time) in Fig. 3, we proposed
a Log-mixed-normal model for indoor pause time: P ∼
exp(λvN (µv, σv) + λoN (µo, σo)) where N (µv, σv) and
N (µo, σo) are normal distributions defining the left and
right peaks. The model parameters of λv, µv, σv, λo, µo
and σo for each building type is fitted using standard EM al-
gorithm. The fitting results are shown in Fig. 3 and Table 3.
The pause time distribution in Fig. 3 is well approximated.
The model parameters in Table 3 are in the same pattern
as shown in Table 2. The mean µ and deviation σ describe

Table 3: Fitted Log-mixed-normal Model

type λv µv σv λo µo σo

admin 0.222 2.722 0.175 0.778 3.722 0.446
cafeteria 0.918 3.042 0.268 0.082 4.135 0.283

classroom 0.214 2.949 0.310 0.785 3.829 0.219
department 0.231 2.730 0.181 0.769 3.708 0.443

dorm 0.802 3.590 0.567 0.198 4.505 0.106
gym 0.222 2.676 0.141 0.778 3.395 0.391

library 0.233 2.901 0.284 0.767 3.927 0.312

our common senses of the building usages. E.g. the µo =
3.829 and σo = 0.219 for classrooms corresponds with the
common 95min to 155min (log10(95 ∗ 60) ≈ 3.756 and
log10(155 ∗ 60) ≈ 3.968) length of lectures.

WiFi Hotspots
With the analysis on mobility traces, in this section we fur-
ther explore how to diagnose for campus planning, espe-
cially indoor WiFi hotspots.

Since internet access through WiFi is a basic need on the
campus, we take its access points as an example of facil-
ities. Based on our mobility detection results, two major
types of hotspots - “pause” and “flight” hotspots where a
lot of devices pause at or fly by - are identified. “Pause”
hotspots can be extensively used by occupants. “Flight”
hotspots are the important cases for wireless networks
study and practical WLAN administration because they
are the most challenging cases for wireless communica-
tion and roaming. So we further characterize entrance/exit
(where most people enter and leave the WLAN of the build-
ing), leaky (high number of short appearances of non-
resident devices) and roaming hotspots (high number of
quick pass-bys of resident devices) as subclasses of flight
hotspots. Under utilized for most of the time. Imbalance of
AP (take FIT as an example, 4 types of hotspots: pause,
entrance/exit, leaky, roaming).



Table 4: Hotspots Classification with Mobility in the 6 Example
Buildings A ∼ F.

(#p: number of pause hotspots. #e: number of entrance hotspots.
#l: number of leaky hotspots. #r: number of roaming hotspots.)

A B C D E F

#p 4 9 55 106 37 103
#e 4 4 1 3 1 2
#l 7 10 16 29 16 16
#r 7 17 15 26 17 24∑

8 19 84 115 50 121

Table 4 shows the 4 types of hotspots (with overlap) in the
6 example buildings. The WLAN was deployed based on
the signal coverage and the prior estimation of population
density. However, we can find that past deployments leave
a lot of potential performance problems. E.g. in cafeteria
A, 8 APs are in short supply and have their power set too
high; in classroom D there are several leaky APs due to the
hollow structure of the building. In the example building F,
APs on floor 1 (ground floor) and 6 (top floor) are classified
as very different hotspot types. The entrance/exit hotspots
near the gate of floor 1 could be identified. While most of
APs on floor 6 are not affiliated with any hotspot type, which
means they may be wasteful cold-spots. In one word, by
knowing the hotspots in each building, network operators
can adjust the current deployment of APs and provide a
much better WiFi experience.

Related Work
It is a fundamental problem to understand human mobil-
ity and behaviors, with far reaching impact. Examples in-
clude: civil planning, transportation improvement, energy
optimization, improvement of networking services, health-
care, online v.s. offline social networks, group behaviors,
event detection [4, 1, 2, 5].

Conclusion
Campus planning and management are usually conducted
through time-consuming process of manual data collection,
outdated analyses, and sometimes subjective and anec-
dotal arrangements. In this paper, we demonstrate how to
utilize ubiquitous WLAN to help better monitor the activities
and diagnose problems on campuses, which sheds light on
the more advanced studies about campus and urban life in
the future.
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