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Abstract 

This paper characterizes an urban region using time 

series of geotagged tweet counts. Time series are 

constructed for each cell in a rectangular grid. We show 

how simple, anonymous tweet counts in the cells can 

be used to classify the cells into urban land use profiles 

based on the number of residences and businesses. We 

discover that Twitter activity for a certain short time of 

day is especially indicative of a region’s profile. We go 

on to analyze the cells and profiles in a novel way by 

looking at their ability to predict tweet counts in other 

parts of the region. 
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Introduction 

An analysis of activity data from people in urban areas 

can lead to interesting insights about where they live. 

For instance, Handy et al. explored the relationship 

between the built environment and human behavior in 

urban areas [1]. Ewing et al. discussed the connections 

between urban sprawl, physical activity, and health [2]. 

While intentional data-gathering works well for focused 
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urban studies, the ubiquity of mobile devices has led to 

a rich source of raw human behavior data ripe for 

exploration. As of 2015, nearly two-thirds of Americans 

owned smartphones [3]. 

One particularly common and informative type of 

mobile data is time-stamped location. At an individual 

level, location tracks can be used to infer a person’s 

preferences [4] and the locations of their important 

places, like home and work [5]. At a collective level, 

logs of location can be aggregated to study travel 

propensity between cities [6] and classify land use [7]. 

This paper describes how we use location data from 

geotagged tweets to understand the makeup of an 

urban area and the relationships between the different 

parts. We show how simple, anonymous time series of 

location data from tweets can be used to classify parts 

of an urban area into land use profiles and how they 

can reveal predictive connections between different 

parts of a city. For each of our quantitative results, we 

attempt to draw conclusions about what they mean in 

terms of human behavior. 

Related Work 

Many social media posts come with an associated 

latitude/longitude measurement, which researchers 

have used to characterize locations. One of these 

characterizations is activity, such as drinking [8], 

restaurant health violations [9], and disease 

transmission [10]. There have also been efforts to 

automatically detect local events, such as EvenTweet 

[11], which exploits both the text and location of 

tweets, and Eyewitness [12], whose detection depends 

on localized, anomalous spikes in tweet activity. 

Other work has attempted to characterize urban ground 

use. Steiger et al. found tweets that indicate work 

locations and showed that these correspond well with 

work locations in UK census data [13]. Looking at 24-

hour profiles of tweet counts, Arribas-Bel et al. created 

clusters of similar profiles and showed how they 

correspond to different ground use categories [14]. 

Cranshaw and Yano used spectral clustering of 

Foursquare venue types to segment urban areas into 

natural neighborhoods and then found the most 

indicative topics mentioned in check-ins for these 

neighborhoods [15]. 

Closer to our work are projects that use social media to 

look at the dynamics of people moving from place to 

place. For example, building on Cranshaw and Yano, 

Cranshaw et al. created Livehoods, which found urban 

neighborhoods that are additionally sensitive to repeat 

visits, helping to model and detect the character of 

different regions of a city [16].  Noulas et al. also used 

spectral clustering from Foursquare check-ins, with 

features including types of venues and check-in counts 

[17]. They clustered users based on where they visited 

and found correspondingly similar regions between New 

York City and London. Finally, Ferrari et al. looked at 

geotagged tweets and user IDs to find crowd clusters 

and identify common movement patterns between 

clusters using a topic model that is normally used to 

analyze documents [18]. 

Our work extends previous work by looking at urban 

land use and location dynamics. Specifically, the 

analysis in this paper differs from previous work in 

these ways: 

 

Figure 1: This grid around New 

York City shows the geographic 

extent of our tweets and the 391 

1km X 1km cells we used for 

discretization. Thicker cell 

borders indicate more total 

tweets from that cell, with the 

largest counts concentrated in 

the south part of Manhattan. The 

cell with the most geotagged 

tweets is shown with a star. 



 

• We look at only aggregated tweet counts over time, 

not the content of the tweets and not the IDs of the 

users. This ensures the privacy of the users, and it 

shows how to take advantage of similar data that could 

come from other anonymous sources like cell tower 

connections and cameras. 

• Instead of trying to find land use profiles based on 

social media, we instead find meaningful, intuitive 

profiles based on known ground use data and then 

show that tweet counts can serve to classify a region 

into one of these profiles. 

• For the profiles above, we show that tweet counts in 

one location are temporally predictive of tweet counts 

in another location. 

Prior to describing our analysis, we summarize the data 

we used. 

Twitter Data 

Twitter, the popular microblogging site, supports an 

optional latitude/longitude field for each tweet. These 

geotags typically come from a location sensor on the 

mobile device from which a user is tweeting. Morstatter 

et al. estimate that 1.45% of tweets from Twitter’s 

firehose are geotagged [19], while Wantanabe et al. 

put the fraction at 0.7% [20]. 

We gathered approximately four million geotagged 

tweets spanning four months in mid-2015, bordered by 

the grid covering New York City shown in Figure 1. We 

chose this region because it covers a diverse range of 

urban areas, and its large population posts many 

geotagged tweets. Each cell is 1 km on a side. The 

thickness of the borders of the cells in Figure 1 indicate 

the relative number of tweets in each cell. The cell with 

the most tweets is shown with a star inside. This cell 

contains New York’s city hall and one end of the 

Brooklyn Bridge. It is near, but does not include, the 

World Trade Center and Wall Street. 

As an initial analysis, we can examine how the number 

of geotagged tweets varies with time. Figure 2(a) 

shows the mean number of tweets per hour over all the 

cells. The three curves show mean counts for 

weekdays, Saturdays, and Sundays over our four-

month time period. The absolute numbers are relatively 

low (always less than five), because many of the cells 

are in water or other sparsely populated areas. As 

expected, there are few tweets in the early a.m. hours 

when people are generally sleeping. There is a gradual 

rise in the morning to a steady rate during the 

afternoon and evening, with a drop after about 8 p.m. 

We note that this variation of tweet counts over time is 

similar to the pattern found in Amsterdam in [14]. 

Figure 2(b) shows the mean number of tweets in the 

cell with the maximum number of tweets (shown with a 

star in Figure 1). In this cell there are many more 

tweets than the overall mean cell in Figure 2(a). 

Despite the magnitude difference, the shapes of the 

profiles for the mean cell and maximum cell are similar. 

The following sections present a more quantitative 

analysis of what we can learn by looking at how tweet 

counts change over time and location. 

Land Use Classification with Tweet Counts 

We are interested in what tweet counts can tell us 

about the land use profile of an urban region as well as 

what features of tweet counts are most informative 

 

(a) Mean over all cells 

 

(b) Mean over cell with most tweets 

Figure 2: The number of tweets 

varies with the hour of the day 

for both (a) the mean of all the 

cells and (b) the cell with the 

most tweets. 



 

about this profile. For instance, we suspect that tweet 

counts from a primarily residential region will differ in 

magnitude and timing from a primarily business region, 

and that the magnitude of tweet counts at night after 

normal business hours may be particularly informative 

at making the distinction between business and 

residential regions. 

Land Use Profiles from Residences and Business Counts 

The land use profile of cells in our grid can be roughly 

characterized by the number of residences and 

businesses contained in each one. Using a dataset of 

residence and business locations from Bing Maps, we 

computed these numbers for each cell. 

We divided the numbers of residences and businesses 

into percentile ranges to create discrete land use 

profiles. Our four percentiles are shown in Table 1. We 

chose these percentiles to highlight different types of 

regions in our study area. The first percentile is very 

narrow, and it is meant to specifically cover regions 

that are essentially uninhabited, such as open water 

and land unsuitable for building. There are still a few 

residences and businesses assigned to these areas from 

our database, primarily due to noise and mistakes. The 

second percentile covers approximately the first 20% of 

the cumulative distribution, with a thin portion removed 

from the lower end to account for near-zero noise of 

the first percentile. This lower 20% represents sparse 

urban land use. The third percentile represents the 

middle 60% of the distribution, accounting for the most 

common land use regions. Finally, the fourth percentile 

covers the top 20%, indicating the highest density land 

use. We use these percentiles as a simple, intuitive split 

of the distributions, although the percentiles could be 

adjusted depending on the application. 

With four percentiles each for residences and 

businesses, there are 16 possible sets of cells. A set of 

cells whose number of residences is in the second 

percentile and whose number of businesses is in the 

third percentile would be named R1-B2, and its cells 

would have a relatively low number of residences (R1) 

and a medium number of businesses (B2). Cells in R0-

B0 have nearly zero residences and businesses, and 

they are primarily those cells that cover nothing but 

water. In Figure 3 we show the cells that make up 

three of the 16 possible land use profiles, including R0-

B0 (mostly water), R2-B2 (medium number of 

residences and businesses), and R3-B3 (large number 

of residences and businesses). We refer to each Ri-Bj 

as a separate urban land use profile. Figure 4 shows 

the number of cells in each profile. Of the 16 possible 

profiles, 7 have greater than 1% of the cells, and these 

7 cells account for 98% of the total cells. 

Tweet Counts and Land Use Profiles 

We are interested in the relationship between tweet 

counts and land use profiles. To explore this 

relationship, we used tweet counts as classification 

features for the seven profiles that had at least 1% of 

the geographic cells. Successful classification means 

that tweets counts are indicative of land use. 

For each of these seven profiles, we built a one-vs.-all 

binary classifier to distinguish the cells with that profile 

from all the other cells. Each classifier used the same 

features: mean tweet counts for every hour of the day 

for weekdays (24 features), Saturdays (24 features), 

and Sundays (24 features). An example of these 

features for one cell is shown as a plot in Figure 2(b). 

 

Figure 3: These are three of the 

distinct land use profiles. The 

black cells show R0-B0, with very 

few residences and businesses. 

The gray cells are R2-B2, which 

have a medium number of both 

types. The two cells with thick 

outlines are R3-B3, which have 

the most residences and 

businesses. 

 

 

I 
%-ile 

Range 

Resident 

Count 

Range 

Business 

Count 

Range 
0 

0.0–

10-4 
0-19 0-21 

1 
10-4 -

0.2 
20-9299 22-3061 

2 
0.2-

0.8 

9300-

31,043 

3062-

47,854 

3 
0.8–

1.0 

31,044-

47,360 

47,855-

70,497 

Table 1: Residences and businesses 

in land use profiles. 



 

The seven binary classifiers were each a FastRank 

decision tree, which is an efficient version of the MART 

gradient boosting algorithm. It learns an ensemble of 

decision trees, where the next tree in the ensemble is 

designed to correct the mistakes of earlier trees [21]. 

We evaluated performance using two-fold cross 

validation. 

The performance results of the seven binary classifiers 

is shown in Figure 5. Classification was generally better 

for profiles with more cells. Weighted by the number of 

cells in the profiles, the overall weighted classification 

accuracy was 81%, weighted positive precision was 

56%, and weighted positive recall was 49%. Thus, 

tweet counts work as distinguishing features for land 

use profiles. 

We can speculate on why tweet counts are indicative of 

our profiles. It is likely that the overall magnitude of 

counts is broadly indicative of land use, with small 

counts indicating smaller numbers of residences and 

businesses, and similarly for larger counts. The time 

distributions of tweet counts may be associated with 

the opening and closing hours of businesses, with some 

businesses open only during the day and others being 

more active at night. 

We queried our seven binary classifiers for the relative 

number of times each feature was used in their 

respective decision trees. Each weekday feature, on 

average, was used 17% of the time in the decision 

trees, while Saturday and Sunday features were used 

8% and 7%, respectively. The most important two 

features are weekday tweet counts at hours zero and 

one (midnight to 1 a.m. and 1 a.m. to 2 a.m. in local 

time), each used about 52% of the time in the decision 

trees. Rerunning the two-fold cross validation tests 

using only these two features resulted in weighted 

average performance that was nearly indistinguishable 

from the original analysis using all 72 features. (See 

last entries in plot of Figure 5.) This surprising result 

shows the discriminative power of weekday tweet 

counts from midnight to 2 a.m. This implies that doing 

the same classification task using webcams or aerial 

imagery should include features that can be derived 

from images taken after sundown, such as vehicle 

headlights and urban illumination. 

Interactions Between Land Use Profiles 

We are interested in assessing how tweet counts 

change over time in different land use profiles, and how 

these changes are related between different profiles. 

We look at these interactions in terms of the predictive 

power of the profiles, measuring how well past counts 

can predict future counts. This is similar in spirit to 

work on predicting road traffic [22] and internet traffic 

[23] based on correlations between measurements of 

the same variable at different times and places. 

 

Figure 5: Classification performance for tweet counts was 

generally good, with larger regions performing better. The 

weighted mean shows overall performance weighted by the 

fraction of cells with each of the seven profiles. 
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Figure 4: Seven of the 16 land use 

profiles have a significant fraction 

of cells. 

 



 

In order to explore this question we use vector 

autoregression (VAR) [24]. A VAR model of order 𝑁 

describes the values of an 𝑀×1 dimensional vector 

𝑦[𝑛] = [𝑦1 𝑦2  … 𝑦𝑀]𝑇 at time step 𝑛 as a weighted sum of 

the values of vector 𝑦[𝑛] at 𝑁 previous time steps:  

𝑦[𝑛] = 𝑐 + 𝐴1𝑦[𝑛 − 1] + ⋯ + 𝐴𝑁𝑦[𝑛 − 𝑁] (1) 

In equation 1, the vectors 𝑐, and 𝑦[𝑛 − 𝑖], 𝑖 ∈ {0, 1, 2, … , 𝑁}, 

are 𝑀×1 dimensional vectors, where each dimension 

represents a different variable. In our case each 

dimension of 𝑦[𝑛] represents the tweet counts in a 

specific profile’s set of cells. The 𝑀×𝑀 dimensional 

matrices 𝐴𝑖 , 𝑖 ∈ {1, 2, … , 𝑁} represent the influence of each 

delayed vector 𝑦[𝑛 − 𝑖] on the current vector 𝑦[𝑛]. These 

matrices can be estimated using tools such as 

multivariate least-squares [24]. 

We created sequences of tweet counts for each of the 

seven urban profiles introduced in the previous section. 

Each tweet count represents the number of tweets in a 

30-minute-long window. We applied a median filter 

with window size 3 to the tweet counts, in order to 

eliminate spikes in tweet counts, which might be due to 

Twitterbots. The result was a sequence of 7×1 

dimensional vectors 𝑦[𝑛] = [𝑦1 𝑦2  … 𝑦7]𝑇, where an 

increment in the value of 𝑛 represents an increment of 

30 minutes of time. Our data covers 123 days between 

May 1 and August 31, 2015. Thus, we have a total of 

123 𝑑𝑎𝑦𝑠 × 24
ℎ𝑜𝑢𝑟𝑠

𝑑𝑎𝑦
×2

𝑡𝑤𝑒𝑒𝑡 𝑐𝑜𝑢𝑛𝑡𝑠

ℎ𝑜𝑢𝑟
= 5,904 tweet counts for 

each cluster. We selected 𝑁 = 5, which means that our 

VAR model uses 5 prior values (2.5 hours) of 𝑦[𝑛] to 

predict the current value of 𝑦[𝑛]. This value of 𝑁 means 

that our VAR model will rely on the rapid changes in 

tweets, and not on the periodic 24-hour changes. 

Next, we asked the following question: Which profiles 

are best at predicting tweet counts among the seven 

profiles? We wanted to first find the answer to this 

question for the case when we use only one profile to 

predict another profile’s tweet counts. We did this by 

using a simplified version of the VAR model, where 

each profile’s tweet count is predicted as a weighted 

sum of prior tweet counts from only one of the seven 

profiles. Such a simplified model would be called auto-

regressive (AR) rather than full vector auto-regressive 

(VAR). 

The results of this analysis are summarized in Table 2, 

where individual cells represent the root-mean-square 

(RMS) error of predicting tweets in a target profile 

using only one of the seven possible profiles. The 

results indicate that each profile is its own best 

predictor. The size of this effect is considerable: using 

the second-best profile to predict the target profile on 

average increases the RMS error by a factor of 1.8. This 

finding is consistent with our results that indicate that 

simple tweet counts serve as good discriminator 

functions for land use profiles. However, the tweet 

count result for classification (not prediction) only 

indicates that there are times in the 24-hour daily cycle 

when average Twitter activity is different and 

informative among the profiles. The AR analysis does 

more – it indicates that the dynamics of Twitter activity 

is determined to a large extent by underlying 

differences in the land use profiles. Each profile is 

somewhat independent in how it behaves, at least in 

terms of tweet counts. 

Table 2 also shows that R1-B1 and R3-B2 were 

consistently among the best profiles to use in predicting 

other profiles. R1-B1 was ranked as the 2nd or 3rd best 



 

single profile to predict all the other six profiles, while 

R3-B2 was ranked as 2nd or 3rd for five of the six. In 

contrast, R0-B1 was consistently the worst (7th) profile 

to predict all six other profiles, while R2-B2 was ranked 

6th or 7th. This implies that some land use profiles are 

consistently better than others at driving the dynamics 

of an urban region.  

We also assessed the prediction error when two profiles 

are used to predict a target profile, moving from a 

simple AR model to VAR. Since we found that profiles 

predict themselves the best, we always predicted 

profiles with profile pairs that include the profile to be 

predicted. Adding a second profile does not reduce the 

prediction error by much: the improvement is about 

5% on average. This again implies that the human 

dynamics of land use profiles are somewhat 

independent of each other, driven mostly by their own 

internal dynamics. 

What is it that makes R1-B1 and R3-B2 more valuable 

in predicting other profiles, and in contrast why are 

predictions less accurate when using R0-B1 and R2-B2? 

R0-B0 and R0-B1 have very low tweet counts, about 2 

and 1 tweets per 30 minutes, respectively. This is 

visualized in Figure 6, where the mean tweet count per 

30-minute time increment for R0-B0 and R0-B1 is 

dwarfed by the counts in the other clusters. Such 

sparse data is likely to be insufficient to accurately 

predict the variability in profiles with significant Twitter 

activity. R2-B2, on the other hand, has the largest 

number of tweets, but we see in Figure 7 that the mean 

daily changes have prominent peaks between 3 a.m. 

and 5 a.m., around 2 p.m., and around 8 p.m. (local 

time). These local peaks are either not present in the 

other profiles, or are less pronounced, and as such R2-

B2 cannot be used to predict the other profiles very 

accurately. 

Figure 6 also shows why R1-B1 and R3-B2 are good at 

predicting other profiles. Both have a substantial 

number of tweets, and both are smooth functions that 

closely resemble the general 24-hour periodic trends of 

the other profiles: a gradual rise in Twitter activity that 

begins around 5 a.m., and a reduction in Twitter 

activity that begins around 8 p.m.  

Conclusion 

Anonymous geotagged tweets can reveal interesting 

insights about the aggregate land use profiles and 

dynamics of an urban area. Although ignoring user 

identifiers makes the analysis less exact, our approach 

shows how to extract interesting insights while still 

  RMS error (in tweets/30 minutes) when 

predicting target using one profile 

  R0-B0 R0-B1 R1-B1 R1-B2 R2-B1 R2-B2 R3-B2 

Profile 

to 

predict 

R0-B0 1.19 2.04 1.66 1.72 1.83 2.00 1.79 

R0-B1 2.01 0.85 1.96 1.96 2.00 2.02 1.96 

R1-B1 16.47 19.89 7.45 14.14 14.98 19.55 13.74 

R1-B2 15.58 17.26 13.42 4.94 15.60 16.83 15.02 

R2-B1 9.88 11.02 7.54 9.53 4.86 10.92 7.49 

R2-B2 62.64 72.59 47.18 53.16 54.14 39.57 45.10 

R3-B2 31.00 36.24 21.93 28.39 25.00 33.89 11.89 

Table 2: Root mean square (RMS) prediction error of tweet 

counts in the seven land use profiles. We count tweets in 30 

minute time periods, thus the RMS error is also given in 

units of [tweets/30 minutes]. The lowest error is bolded in 

green cells, the second lowest error is underlined in blue 

cells. 



 

preserving privacy. Our examination of land use profiles 

showed that tweet count features can be used to 

classify an urban area into different regions based on 

their relative numbers of residences and businesses. 

Looking at the specific features, we found that simple, 

average counts on weekdays between midnight and 2 

a.m. are powerful classification features. Our VAR 

analysis is a simple, principled way of discovering 

predictive relationships between the human dynamics 

of different parts of an urban area. We found that land 

use regions are best predicted by past values of their 

own tweet counts and that certain profiles are more 

predictive than others. 
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