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Abstract 

Pedestrian-vehicle accidents are the cause of many 

human injuries and deaths. To address this challenge, 

vision-based traffic systems have focused on detecting 

traffic-related objects’ behaviors, such as vehicle 

position and velocity relative to pedestrians. In this 

paper, we propose a new and simple model for 

effectively recognizing overhead front point of vehicles, 

while only using a single stationary camera capturing 

from an oblique angle. The proposed system uses 

faster R-CNN model for detecting object bounding box 

and mask, projects the mask’s extreme points down to 

find the car’s ground front point, and transforms these 

coordinates from oblique to overhead frame of 

reference. Our experimental result shows that this 

method is effective for recognizing overhead front point 

of car (accuracy: 92.4%) within a certain tolerance.  
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Introduction 

Over 1 million people die each year from road traffic 

accidents, and up to 50 million are injured [1]. 

Especially, most accidents where pedestrians are 

injured occur at crosswalks, since pedestrians are most 

exposed to fast vehicle movement in these spaces [2]. 

As one of the methods for alleviating deaths of 

vulnerable road users (VRUs), vision-based traffic 

safety/surveillance systems have been extensively 

applied, focusing on traffic-related objects’ (e.g. 

pedestrians and vehicles) behavior analysis and 

potential collision risk (e.g. near-miss collision) analysis 

[1]. Consequently, these vision-based systems make it 

possible to understand driver behavior in specified 

places, identify patterns, prioritize the most dangerous 

places, and test improvements to their design. 

In vision-based traffic safety systems, one important 

process is to extract the vehicles’ and pedestrians’ 

behavioral factors from video, such as vehicles’ 

velocity, direction, number of pedestrians, and their 

positions. These factors are applied to detect dangerous 

events and quantify risk using time-to-collision (TTC), 

post-encroachment time (PET) and other measures [3]. 

Therefore, it is essential to extract these features 

accurately from video. 

However, many studies have extracted these features 

by manual inspection from huge volumes of traffic 

video [4]. In addition, most vision sensors, such as 

closed circuit television (CCTV) cameras, take oblique 

views of the vehicles, making it difficult to extract the 

precise features such as velocity and position from an 

overhead view. Often, extracting these features 

requires multiple sensors and additional complex 

processing, at additional time and cost.  

In order to address these challenges, we propose a 

simpler model for effectively recognizing overhead front 

points of vehicles by using single sensor, RGB camera. 

The proposed system consists of three core modules; 

1) object detection module; 2) vehicle’s front point 

recognition module; and 3) perspective transformation 

module.  

First, in the object detection module, faster R-CNN 

(region-convolutional neural network) model is used to 

detect the object in video frames. As output of object 

detection, we can obtain the bounding boxes and 

masks of the detected objects. In the second module, 

we extract the ground-front point of the vehicles using 

the masks generated in the previous step. Finally, all 

coordinates are transformed into the overhead frame of 

reference from the oblique view. 

Related works 

Much research has been conducted on extracting the 

more precise object behavioral features, such as 

velocity, in fields of traffic safety and computer vision. 

Early, they focused on discriminating objects by using 

various types of statistical learning classifiers such as 

support vector machines (SVMs) and AdaBoost based 

on a vector of raw pixel value or features extracted 

from them, and the output is the decision showing 

whether the object was detected [1][5]. In addition, for 

recognizing the objects, fusion of multiple sensors was 

used. As an example, stereo sensors using visible light 

and thermal images were used to detect and track 

objects in order to obtain their 3-D locations [6]. 

The development of neural network approaches 

resulted in faster R-CNN models specialized in detecting 

most types of objects in image. These are now widely 



 

used in various fields as well as traffic safety area [7]. 

Thus, detecting objects in images is no longer the 

critical technical barrier; now, extracting an object’s 

behavioral features, processing and analyzing them 

have become the main issues. Recognizing the 

overhead front point of the object, especially vehicles, 

allows us to extract other features, such as velocity, 

position, and direction, more accurately.  

In a prior study for recognizing the overhead front point 

of the vehicle, Markéta et al. proposed a 3-D bounding 

box constructing method by using the camera 

calibration [8]. They assumed that vehicle silhouettes 

can be extracted by background modeling and 

foreground detection. Then, they used the tangent lines 

and their relevant intersections to construct the 

bounding box. However, this method requires high time 

complexity for extracting vehicle silhouettes by 

applying background modeling, and calculating tangent 

lines by vehicle’s facing angle. Zhang et al. proposed 

car front detection method by recognizing the license 

plate on the vehicle and extracting features from this 

area as front parts of vehicles with cascade ensembles 

method [9]. This method is good to detect car front. 

However, it is difficult for this method to extract the 

accurate front point of the car from an overhead view, 

since the license plate is some distance above the 

ground, with its pixel location projecting to the ground 

somewhere underneath or behind the car’s body. 

In order to address these challenges, the proposed 

system uses only one RGB camera sensor, which costs 

less and is easier to deploy than using multiple sensors. 

In addition, it makes manual inspection of huge 

volumes of traffic video unnecessary when extracting 

the front point location of vehicles in each frame. 

Consequently, it can quickly derive a vehicle’s velocity 

and acceleration in overhead view using multiple 

frames. This makes it possible to detect and analyze 

critical vehicle-pedestrian interactions, such as near-

miss collision or potential risk events, based on traffic 

video. 

Materials and Methods 

Object Detection based on Faster R-CNN model 

In order to detect vehicles, we use faster R-CNN model 

with mask output [10]. To date, the incredible  

development of deep CNNs, in field of computer vision, 

has dominated the various tasks in image processing 

and recognition [11]. In particular, faster R-CNN is 

widely used to detect many types of objects in a frame 

[12]. Here, we used object detection API using the 

faster R-CNN model with pre-trained weights for 

Microsoft common objects in context (MS COCO) 

[13][14]. 

In our experiment, since the goal of this module was to 

detect only vehicles and pedestrians to represent their 

masks as output, additional training was not needed. 

The accuracy of detecting vehicles and pedestrians is 

approximately 99.9%. As a result, we obtained the 

bounding-boxes and masks from input images in form 

of matrices (see Figure 1). The size of each matrix was 

equal to that of the bounding-box. If the coordinates of 

a pixel was on the object, its value was 1, otherwise, 0. 

Front Point Recognition 

In this section, we describe how to recognize the front 

point of the vehicle, as the core methodology of the 

proposed system. We use the extreme points of the 

object mask along the x and y dimensions. 

 

Figure 1: Result of object 

detection and mask matrix 



 

First, we need to determine whether the car is moving 

toward the camera or not, by calculating its bounding 

box movement along the x-axis in consecutive frames. 

When the car is moving toward camera (left to right), 

the change in x-value is positive, and the opposite case 

negative. If the car is moving toward the camera, 

mask’s x-max tip and y-max tip points are calculated, 

then we can get the front-center of these two points, 

mask’s center point (see Figure 2). In case of reverse 

direction, mask’s x-min tip and y-min tip points are 

used. 

  

Figure 2: Method of finding ground point  

with lane function and mask’s center point 

Generally speaking, since the vehicle moves parallel to 

the road, we assume that the front point of the vehicle 

is on the road as seen in Figure 3. Thus, we create a 

virtual straight line running parallel to the lane and 

centered between its bounds, called the lane function, 

and project the mask’s center point down to it.  

This represents a point on the ground directly 

underneath the front center of the car, in the oblique 

view. 

Perspective Transformation 

By transforming the perspectives, we can obtain the 

front point in overhead view (see Figure 4). First, we 

marked the orthogonal grid points at intervals of 5 

meters on the road as green dots in Figure 4. Based on 

four of these points, and their corresponding pixel 

locations, a transformation matrix is calculated by using 

getPerspectiveTransform() function in OpenCV. We can 

apply this transformation to any points in the oblique 

view, converting them to the overhead perspective. 

In our experiment, we only transformed the red 

rectangular zone in Figure 5. As a result, Figure 6 

illustrates the transformed image, which includes 

transformed grid points (white points), crosswalks and 

sidewalks (red and green regions, respectively).Figure 

6 shows the trace of the front-point of a vehicle moving 

right to left for 25 frames (color gradient representing 

time).  

With the proposed model, we can obtain the more 

precise overhead front point of vehicles, and calculate 

various features such as distance, velocity, and 

directions. 

 

Figure 5: Transformed region (within red rectangle) 

 

 

 

 

Figure 3: Lane graph (yellow line) 

 

 

Figure 4: Example of perspective 

transformation 

 



 

Experimental Results 

In this section, we describe the experimental design for 

the proposed model recognizing overhead front point of 

a vehicle. We recorded video for 25minutes with 30 

frames/sec at an oblique angle over a crosswalk. The 

size of area for experiment is about 20m in width and 

30m in length, and contains the crosswalk. This video 

data included 100 frames for each vehicle, consisting of 

50 left-to-right frames and 50 right-to-left frames. 

To evaluate the feasibility and applicability of the 

proposed model, we used a concept of “distance 

tolerance”. In fact, it is difficult to define a point that 

exactly represents the front point of the vehicle by 

using only one camera sensor. Therefore, we tolerate 

some errors, and we assumed that if there are 

estimated points (using the proposed model) within the 

error boundary, these points are properly detected as 

follows:  

{
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑;             𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡(𝑥�̂�, 𝑦�̂�), 𝑝𝑜𝑖𝑛𝑡(𝑥𝑖 , 𝑦𝑖)) ≤ 𝑑𝑖𝑠𝑡𝑒𝑟𝑟𝑜𝑟 ∗ 𝑘

𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑;     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                        
 

where  

𝑝𝑜𝑖𝑛𝑡(𝑥�̂�, 𝑦�̂�): 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑢𝑠𝑖𝑛𝑔 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑒𝑡ℎ𝑜𝑑 𝑖𝑛 𝑖𝑡ℎ 𝑓𝑟𝑎𝑚𝑒, 

𝑝𝑜𝑖𝑛𝑡(𝑥𝑖 , 𝑦𝑖): 𝑟𝑒𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡𝑒𝑠𝑡𝑒𝑟𝑠 𝑖𝑛 𝑖𝑡ℎ𝑓𝑟𝑎𝑚𝑒 

𝑑𝑖𝑠𝑡𝑒𝑟𝑟𝑜𝑟: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛ce  

𝑘: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

The value of 𝑘 is constant which converts real-world 

distance into image distance. In our experiment, since 

baseline is 5𝑚 (green dots in Figure 5), and its distance 

260𝑝𝑖𝑥𝑒𝑙 in image, the value of 𝑘 is 0.52 

(260/500)𝑝𝑖𝑥𝑒𝑙/𝑐𝑚.  

For every distance tolerance, we can derive a velocity 

tolerance. Since distance has some level of error, 

velocity also has some level of error. Practically 

speaking, the velocity error is calculated by measuring 

the distance between two frames, and dividing by the 

time between those frames as follows: 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑒𝑟𝑟𝑜𝑟 =
2 ∗ 𝑑𝑖𝑠𝑡𝑒𝑟𝑟𝑜𝑟

(1/𝐹𝑃𝑆)
 

If assuming 30FPS video, and sampling every 10th 

frame, time between frames is 1/3 seconds. Then, the 

distance tolerance is 30cm, then the max potential 

error in that distance the car moved between two 

frames is 60𝑐𝑚, or 0.6𝑚. Thus, velocity tolerance in this 

scenario is 1.8 𝑚/𝑠,  or 6.48 𝑘𝑚/ℎ.  

In order to conduct comparison, we recruited 5 testers, 

and asked them to select the pixel location for the 

actual front point of the vehicle for 100 frames. Each 

frame includes one vehicle object. Then, we compared 

the difference between the points derived from the 

proposed model and the points selected by the testers, 

and measured accuracy according to various distance 

tolerances (10cm, 20cm, 35cm, and 50cm) as seen in 

Figure 7. If the distance between the point picked by 

the tester and the point derived from the proposed 

model is within the tolerance radius, we consider that 

front point correctly detected. 

As the result of the comparison, the average accuracy 

is more than 92.4% when the distance tolerance 

boundary is 50𝑐𝑚 (see Table 1). According to the 

formula, when distance tolerance is 50𝑐𝑚, velocity 

tolerance is about 10.8𝑘𝑚/ℎ. In our future research, 

risk of a vehicle’s behavior will be assessed based on its 

velocity within increments of 10km/h. This makes our 

 

 

Figure 6: Result of re-constructed 

frame and trace of vehicle front 

 

 

Figure 7: Example of distance 

tolerance boundary 



 

detection system mostly sufficient in locating vehicles 

precisely enough to classify their risk within our model. 

Conclusions 

In this paper, we proposed a simpler model for 

effectively recognizing the front point of a moving 

vehicle. The proposed model applied pre-trained faster 

R-CNN model to detect objects, found ground point by 

using the lane function and object mask, and 

transformed the oblique perspective into overhead 

view. We also confirmed that the proposed model can 

accurately and stably detect the overhead front point of 

the vehicle within a certain tolerance by experimental 

results. As a result, when tolerance is 50cm, average 

accuracy against manual detection is 92.4%. This 

selected distance tolerance is also precise enough to 

distinguish degree of risk according to velocity.  

For next steps, we will define rules for potential risk 

events based on the vehicles’ and pedestrians’ velocity, 

direction, and position relative to each other and their 

context. For example, it is a very dangerous event 

when a car passes in front of a pedestrian crossing the 

street, at high speed without stopping. We believe 

detecting such events will help clarify the causes and 

contributors to vehicle-pedestrian accidents in crossings 

throughout the city, and allow us to quickly identify the 

impacts of design changes on driver behavior in those 

places. 

The final purpose of this ongoing research is to 

demonstrate an automated methodology diagnosing 

traffic safety at specified roads such as unsignalized 

crosswalks and intersections, and to analyze the 

potential risky event by extracting traffic-related object 

(e.g. pedestrian and driver) data required to 

understand their behaviors. 
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