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ABSTRACT
Population flow data (traffic sets of crowds from one regions
to another) is of great value in a wide range of fields from
urban traffic resource allocation to public security protec-
tion. Since the data of the individual-level mobility requires
privacy protection, it’s hard to collect detailed population
flow data. There have been published works on generating
population flow from aggregated data. But they have the
limitations of considering the flow between neighbors only
or modeling the mapping from aggregated population data
to flow by a simple physical model without taking regionally
diversity into account. However, long-range dependencies
and regionally diversity is very important. Since population
flow contains more information than that in aggregated pop-
ulation variation, generating the detailed former from the
aggregated latter is quite difficult. In this paper, we proposed
an end-to-end structure deep learning based model to gener-
ate population flow from aggregated historical population
variation data.We use real-world datasets to compare the per-
formance of our model with several baselines, which shows
the superiority of our model. This proves the potential of
using deep learning in population flow generation.
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1 INTRODUCTION
The population flow data, which means statistics on the
number of people moving between regions, has a great value
on applications in urban traffic resource allocation, public
security protection and so on. Obtaining population flow
data is quite a hindrance due to the high cost of existing
approaches and privacy leakage. However, getting aggre-
gated population variation data is relatively simple. Thus,
it’s important to find a way of generating population flow
data from aggregated population variation data.
Some works [11, 17, 18, 22] have been done to generate

population flow or individuals’ trajectories from aggregated
population data. Iwata et al. [11, 18] generated flow data
from neighbors. But the long-range dependencies is also
important, because modern transportation, such as subway
and expressway, brings long-distance transportation in a
short time interval. Xu et al. [17, 22] consider long-range
dependencies but have other problems. Xu et al. [22] use
a simple physical model without dealing with the complex
interaction between all regions and dynamic complexity in
time. Tanaka et al. [17] ignore that different regions have
different flow patterns.

In summary, it’s not easy to generate the population flow
from aggregated data due to 2 challenges. First, the interac-
tions between a region with all others are a lot in quantity
and variety. Second, the interactions are dynamic in time.
Traditional models can’t express this kind of complexity of
population flow but we can extract the spatial-temporal fea-
tures of it from data using deep learning model. What’s more,
the mapping from population variation to population flow
is regionally diverse. So, every region should have its own
model to extract the distinctive pattern.
Due to the reasons above, we propose to solve the pop-

ulation flow generation problem with deep learning. Deep
learning models have been widely used in many applications
and given excellent performance, especially CNN (convolu-
tional neural network)[14]. CNN performs well on extracting
the interactions between regions from data. And CNN with
multiple layers is good at hierarchically extracting spatial
features. Deep layers in the CNN can get the long-range
spatial dependencies. Additionally, Zhang et al. [16, 23, 24]
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bring the knowledge that CNN carries the ability of spatial-
temporal prediction. The diversity of interregional popula-
tion flow makes it hard to extract different patterns from a
single model. So, we propose to use multiple deep learning
models to generate the respective region’s population flow
with all others.

In this paper, we propose a deep learning based model to
generate population flow from aggregated population vari-
ation data. First, we use CNN to extract the interactions
between regions from data. Second, we use multiple mod-
els to generate the population flow of the corresponding
region respectively. Our contributions can be summarized
as follows:

• We design a deep learning based model to generate
population flow from aggregated population variation
data.

• We conduct extensive experiments with several base-
lines. Compared with the baselines, results demon-
strate that our model has considerable advantages in
generating population flow.

The rest of this paper is organized as follows. We first
formulate the problem in Section 2. Following the problem
formulation, in Section 3, we describe the motivation of our
works and the details of the whole framework of our model.
In Section 4, we apply our model on real-world mobility
datasets and conduct extensive experiments. After system-
atically reviewing the related works in Section 5, we finally
conclude our paper in Section 6.

2 PROBLEM DEFINITION
The several definitions of generating population flow from
aggregated population variation data will be introduced as
follow.

Definition 1 (Region) Based on longitude and latitude,
the city is divided into (H x W) grid regions S.

Definition 2 (Population Variation) Population varia-
tion is the aggregated data counting all people flow into or
out of one region and we define them as inflow and outflow,
respectively. The inflow/outflow of region (h,w) at t th time
are expressed as follow,

xh,w,in
k =

∑
Trk ∈P

|{j > 1|дj−1 < (h,w) & дj ∈ (h,w)}|,

xh,w,out
k =

∑
Trk ∈P

|{j ≥ 1|дj−1 ∈ (h,w) & дj < (h,w)}|.

The P up here means trajectories collection at the kth time
interval.Tr : д1→д2→· · ·д |Tr | is a trajectory in P, and дj rep-
resents the geospatial coordinate; дj∈(h,w) when дj belong
to region (h,w), while дj<(h,w) not. |·| means the cardinality
of a set.

Figure 1: Main architecture.

Definition 3 (Population Flow) Population flow pro-
vides the information of how many people move from one
region to another. We named one region s , s ∈ S. Population
flow is defined as follow,

f sm,sn
k =

∑
Trk ∈P

|{j > 1|дj−1 ∈ sm & дj ∈ sn &m , n}|.

Here f sm,sn
k means the population flow from region sm to

region sn at kth timestamps.
Population Flow Generation We generate { fk } with

given historical population variation data {xt |t < k}, where
{ fk } means the population flow set between regions at time
k .

3 METHODS
Motivations
The difficulties of the population flow generation from ag-
gregated data lie in that interactions between a region with
all others are a lot in quantity and variety. And the inter-
actions are dynamic in time. This means the complexity of
population flow makes traditional models hardly model the
spatial-temporal features. Even worse, the patterns of the
flow between different regions are various. A single model
can’t express this kind of diversity.
Deep learning models [14] have shown its great power

to extract the interactions between regions from data, and
[16, 23, 24] have shown that CNN carries the ability of spatial-
temporal prediction.
The output data of population flow contains important

information. Because of the different locations of regions
and the uniqueness of the mode of transportation in each
region, the population flow of each region with all others
has a distinctive pattern. Neural networks are powerful in
learning this kind of pattern from the output data. In this
way, the generation is not based entirely on input population
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Figure 2: Convolutions for capturing different level depen-
dencies.

variation, and transition patterns in population flow data are
also playing a role in influencing the model.

Model
Our model’s framework is shown in Figure 1. It takes stacked
historical aggregated population variations of all regions
{Xi∈R

2×H×W | i = k − l , ...,k − 2,k − 1} as input, where l is
the length of dependent timestamps of historical data. Here
is the formulation of historical population map,

(Xi )0,h,w = xh,w,in
i ,

(Xi )1,h,w = xh,w,out
i .

The l historical population maps are stacked onto different
channels of one training instance and Min-Max normalized
to [−1, 1]. Then, the instance input the network and the
output is population flow of one region.

The flows of one selected region (h∗,w∗) {F̂k∈R
2×H×W } in-

clude population of all other regions flowing into this region,
and the number in the opposite direction. The formulation
is as follow,

(F̂i )0,h,w = f (h,w ),(h∗,w∗)

i ,

(F̂i )1,h,w = f (h
∗,w∗),(h,w )

i .

Here we use convolutional operators to extract hierarchi-
cal spatial features, shown as Figure 2. People on the subway
will have a high speed and move a far distance in a short
time interval. Hence, the long-range spatial dependencies is
important in population flow generation. And CNN should
have multiple convolutional layers to get that information.
The architecture of ConvUnit in Figure 1 includes a convolu-
tional layer and a batch normalization layer[10] followed by
Relu function[6]. The formulation of ConvUnit is shown as
below,

X (l ) = FRelu (FBN (W
(l ) ∗ X (l−1) + bl )),

whereX (l ) means the feature map of layer l , FRelu means the
Relu activation function, FBN means the batch normalization
operation,W (l ) and bl represents weights and bias of the
convolutional layer.

The ConvUnit before ResUnits is used to adjust the num-
ber of tensors’ channels to matches with ResUnits at first,
this step will also extract a certain degree of features. Batch

Algorithm 1Model Training Algorithm
Input:

Dependent l historical population variation data
of timestamp k , {Xi |i = k − 1,k − 2, ...,k − l}

Output:
Generated population flows {F̂k } at timestamp
k of selected region (h∗,w∗).
//construct training set

1: D⇐ ∅

2: for all timestamps of training set do
3: Di ⇐ [Xi−1,Xi−2, ...,Xi−l ]

4: put Di into D
5: end for//Xi is the variation instance at time i .

//train model
6: initialize the learnable parameters θ of model
7: repeat
8: choose a batch of D from D
9: optimize θ by Adam based on the choosen batch of D
10: until model converge

normalization layers working here have a great effect. Popu-
lation flow data across a wide range of areas is often sparse.
Batch normalization layers can eliminate the impact of data
particularity and prevent our model converging at a local
optimum.
It’s well known that very deep convolutional networks

will compromise its training effectiveness. But we need many
consecutive convolutional layers to extract the long-range
dependencies. ResNet[8] is famous for that it will remain its
performance even if the architecture goes very deep. So we
use ResUnits to extract the spatial-temporal features. The
formulation of ResUnit is as followed,

Xl+1 = Xl + F (Xl ),

where F (·) represents the function of calculation that passes
two successive ConvUnits, andX l represents the feature map
of l th layer. ResUnit can be regarded as a feature extractor
unit with a shortcut connection. We use identity mapping
as the shortcut, and its output is element-wise added to the
output of 2 stacked ConvUnit layers, shwon in Figure 1. The
output of ResUnits then passes through a (1 × 1) convolu-
tional operator and is reshaped to (2×H×W ). We use tanh
function[15] to limit the output into [−1, 1] which can be
re-normalized to the level of population number.

Training Algorithm 1 tells the process of training our
model. We construct training instances, Dk , from the histori-
cal population variation datamaps {Xi |k < i}, shown in lines
1-5, where k means the timestamps of the target population
flow generation. We train the model by back-propagation
and using Adam[13] as the optimizer.
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4 EXPERIMENTS
In this section, we conduct extensive experiments on a real-
world dataset to demonstrate the superiority of our model.

Dataset
This dataset is collected from the most popular social net-
work in China from Apr. 1st to Apr. 30th located in Beijing.
It records the location of users when they used the loca-
tion service in the application. We first partition the grids as
Definition 1. And then we extract population variation as
Definition 2, and extract population flow as Definition 3.
We choose data from the last week as the testing data, and
all data left as the the training data.

Baselines
• HA: It utilizes the periodical historical average popu-
lation flow value to generate the respectively period
population flow.

• GravityModel[3]: Gravity model is a well known and
widely used classical model that motivated by New-
ton’s law of Gravitation. In population flow genera-
tion, the population flow is represented by the gravity
produced between celestial bodies and the population
number represents the mass of celestial bodies. It in-
cludes two versions: singly constrained and globally
constrained. We test them all on our data.

• Individual Model: It computes the aggregated re-
gional individual’s probability distribution of flowing
into all other regions based on historical data. And the
probability is then used to generate population flow by
aggregated population variation at target timestamps
on individual level.

Metrics
We select Root Mean Squared Error (RMSE) and Normalized
Root Mean Squared Error (NRMSE) andMean Absolute Error
(MAE) as metrics,

RMSE =

√√√
1
T

T∑
i=1

| |Xi − X̂i | |
2
2,

NRMSE =
RMSE√∑T
i=1 | |Xi−X | |22

T

,

MAE =
1
T

T∑
i=1

|Xi − X̂i |,

whereXi and X̂i means the ground-truth and the generation
at the ith time interval.

Performance
Overall Performance The performances of our model and
baselines are shown in Table 1. The parameters of our model

Model RMSE NRMSE MAE
gravity-globally 4.0876 1.0042 0.3890
gravity-singly 3.6046 1.0049 0.3315

HA 1.6172 0.4018 0.1762
Individual-Model 1.2893 0.3204 0.1590

CNN 1.1649 0.2880 0.1823
ResNet 1.1028 0.2726 0.1522
Table 1: Comparison with baselines

Value
ResNum 6

len_closeness 3
kernel_size 7

channelsNum 64
Table 2: Parameters

are given in Table 2. The ResNum means the number of
ResUnits in the model. The len_closeness means length of
historical data of one training instance. We use (7 × 7) ker-
nels which have 64 channels as the convolutional operator
in ConvUnits. As shown in Table 1, deep learning has con-
siderable advantages in solving the problem of generating
population flow from aggregated data. Even though the ar-
chitecture of CNN in Table 1 includes a ConvUnit of (1 × 1)
and 3 ConvUnits of (7×7) only, it exceeds the best traditional
baseline, individual model, 10 percent in performance based
on NRMSE. And we test the model which has 6 ResUnits,
as the ResNet shown in Table 1. ResNet with 6 ResUnits ex-
ceeds the CNN by 5 percent based on NRMSE. From the view
of MAE, basic CNN doesn’t perform well enough. Because
the high deviation generated instances have been destroyed
but not a large number of low deviation generated instances
during training. This can be solved by increasing the num-
ber of layers of the neural network. We select one region
and visualize its generated population flow and ground truth
of one same time via heatmap, shown in Figure 3. Every
cell in the heatmap represents a grid region in city. And the
region we select is at (3, 3) on shown heatmap of Figure 3,
whose top-left cell’s coordinate is (0, 0). We can see that the
population flow generated is very close to the ground truth.

0
2
4
6
8
10

(a) generation

0
2
4
6
8
10

(b) groundtruth

Figure 3: Comparison visualization of generated population
flow with groundtruth.
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Results AnalysisWe analyze the generated results of our
deep residual model from spatial and temporal perspectives.
As shown in Figure 4(a), the fluctuations in the error during
the testing week showed a significant periodicity. During
the peak traffic period (daytime and midnight before), the
generation error will increase significantly. This shows that
the greater the change of population variation, the more
difficult it is to generate flow. The similar results are shown
in Figure 4(b). Regionswith larger population changes(higher
population variation) has a larger error.

Effect of Parameters There are four important parame-
ters, shown in Table 2. The effects of these parameters are
shown in Figure 5. Figure 5(a) shows the effect of length
of historical data. The results give knowledge that the in-
formation isn’t enough to generate population flow if the
historical length is too short. Too much noise brings out if
it’s too long. The same as kernel size, moderate kernels give
better performance, as shown in Figure 5(b). The population
flow depends on not only the temporal patterns but also the
spatial patterns. The (1 × 1) kernel can’t extract the interac-
tion of the regions. During the forward propagation, we use
zero paddings to fit the size of intermediate feature maps.
If the kernel size is too large, there will be too many zeros
adding to the feature maps as noise which will make our
model perform worse. Figure 5(c) give the experiment re-
sults of the survey on the number of ResUnits used in model.
We can see that the deeper the network is, the better perfor-
mance will the model brings. The element in a feature map of
the deeper layer will get information from a larger scale com-
pared with the shallow one, shown in Figure 2. That’s maybe
the reason for better performance of the deeper network.
Figure 5(d) shows the relationship between performance and
the number of channels of ConvUnits used in ResUnits. In a
certain range, increasing the complexity of the model by add
channels will improve the performance. However, too many
channels will make the network overfitting. That’s what we
can see from Figure 5(d).

0 1 2 3 4 5 6 7
7 days of testing

0.5

1.0

1.5

RM
SE

(a) Analysis from temporal view.

50 100 150
Population Variation Quantities

0.5

1.0

1.5

2.0

RM
SE

(b) Analysis from spatial view.

Figure 4: Results analysis from spatial and temporal view.

5 RELATEDWORK
The work in the following three fields is related to our work.

2 4 6
Length of input historical data.

1.11

1.12

1.13

1.14

RM
SE

(a) Historical length

2 4 6 8
Size of convolutional kernels.

1.10

1.15

1.20

RM
SE

(b) Kernel size

2 3 4 5 6
Number of ResUnits.

1.10

1.11

1.12

RM
SE

(c) ResUnits

50 100
Number of ResUnits' feature channels.

1.15

1.20

RM
SE

(d) Channels

Figure 5: Effect of importance parameters.

Population Variation Prediction. There are some pub-
lished studies working on prediction crowd flow from his-
torical data. Some used traditional methods. Xia et al. [20]
usde KNN (K-nearest neighbor algorithm) to improve fore-
casting accuracy based on spatial-temporal correlation. Fan
et al. [5] used random Markov chains to model the naive
movement. Hoang et al. [9] proposed the seasonal and trend
models based on Gaussian Markov random fields. Many deep
learning-based models have been proposed as the develop-
ment of neural networks. ConvLSTM[21], hybrid deep learn-
ing framework[4], STRCNs[12], Periodic-CRN[26], were all
in form of combining CNN with RNN. Deep-ST[24] is the
first model to extract spatial features based on CNN. Further,
ST-ResNet[23] replaced the general convolutional operation
with the residual framework. DeepST+[16] used ConvPlus,
SemanticPlus operation to get long-range spatial dependence
and POI (point of interest) information and improved the
model. Works above are all CNN-based. They all predict
aggregated crowd flow.

Origin-DestinationPrediction.Calabrese et al. [2] probed
trajectory from location data first, then recovered the flow
data from trajectories. Gong et al. [7] predicted the next
needed OD matrix from previous OD snapshots based on
Online Non-negative Matrix Factorization. Toqué et al. [1,
19, 25] predicted time series of TM (traffic matrix ) by LSTM
from historical OD data.

Population Flow Generation from Aggregated Data.
Some works focused on population flow generation from
aggregated flow data. Xu et al. [22] recovered trajectory
from aggregated population data and transition probabili-
ties. Iwata et al. [11] used collective graphical models as a
framework to estimate the population flow spatial-temporal
population data. Tanaka et al. [17] estimated latent popu-
lation flow from inflow and outflow. Iwata et al. [18] was
proposed by adding the elements of a simple neural network
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to get the probability distribution used to generate popula-
tion flow based on [11].

6 CONCLUSION
Population flow data have a great value but it’s difficult to
get the data. In this paper, we propose a deep learning based
model to generate detailed population flow given aggregated
population variation data. With our model, the patterns that
exist in population flow data can be learned by the neural
network which is of great use in generation. Compared with
several baselines, the extensive experiments confirm the
superiority of our model.
What is more, we have a more concise and effective re-

search direction. The first is merging the POI and extra sup-
port information into our model to enhance its performance.
The second is using transfer learning to get similarity be-
tween regions to accelerate the training process.
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