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Abstract
Urban cyclists often rely on Google’s biking directions
to consult routes and times. However, cyclists have
reported that those estimates can sometimes be
inaccurate [1]. In this paper, we explore the accuracy of
Google biking times using a crowdsourced approach.
Specifically, we use real biking data from a bike sharing
system as ground truth and evaluate the automatic
computation of Google’s biking times. We analyze
similarities and differences between the two as well as
the role that measurable factors such as trip distance
or slope might play in the temporal differences. Finally,
we propose a predictive model based on a set of
measurable factors that improves the accuracy of
Google’s biking time computations by 5%.
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Introduction
In the last ten years, there has been a large increase in
bike use specially among young urbanites. Only in the
US, commuting by bike has grown by 60% over the
past decade [2]. Bike sharing systems have partially
contributed to this surge by allowing cyclists to easily
borrow bikes for short trips in cities such as New York



(Citi Bikes), Chicago (Divvy), San Francisco
(SFBikeShare) or Washington D.C. (Capital Bikeshare).

There exists a wide range of mobile applications that
allow cyclists to map biking routes and to share them
with others including Ride with GPS, Map my Ride,
Veloroutes or Routeslip. For any existing route, cyclists
can download maps from other cyclists and check
specific features such as directions or the length,
duration or elevation of the route. However, most of
these applications are used by leisure cyclists who
focus on long, rural bike trips or on touristic urban trips.
Regular urban cyclists and commuters willing to plan
their daily routes typically resort to the biking directions
in Google Maps. As opposed to the mobile
applications, where maps are created by cyclists,
Google Maps automatically generates biking routes
and times using a set of algorithms based on map
information and average biking speeds, among other
features. As a result, urban cyclists sometimes report
inaccuracies with the biking times and routes proposed
by Google [1].

In this paper, we analyze the accuracy of google biking
times using crowdsourced data from thousands of
urban bike routes generated by the users of a bike
sharing system. We take advantage of the open data
initiatives present in many bike sharing programs that
allow to access individual trip data and use that
information as ground truth. Our contributions are
twofold: (i) we analyze the differences between google
biking times and the crowdsourced data, and evaluate
the role that certain measurable factors such as trip
distance or slope might play; and (ii) based on the
previous analysis, we propose a predictive model that
incorporates the measurable factors into current

google’s computations to improve the accuracy of their
biking times when compared to the crowdsourced data
(ground truth). Since bike sharing systems are not
present in all cities, such predictive models would allow
Google to enhance their biking time computations
worldwide using crowdsourced data from just a few
cities.

Related Work
Our work is based on the idea that crowds can act as
passive or active sensors of human behavior [18].
Active sensing behaviors or participatory sensing
empowers individuals to gather and analyze data from
their own surroundings with the objective of sharing
local knowledge [17, 6]. On the other hand, passive or
opportunistic sensing behaviors require less user
involvement and include scenarios such as location
sampling without explicit action from the user [12, 8, 9,
7, 5]. There exist multiple mobile systems that focus on
active sensing to improve biking experiences [4]. Our
research is framed within opportunistic sensing as we
use biking data passively gathered by bike sharing
programs from the interactions of thousands of users
with the systems.

From an analytical perspective, there exists a large
number of papers studying the performance of bike
sharing systems. Some of the most important issues
are balancing, or how to guarantee that there are
available bikes in all stations at all times [10]; predicting
bike usage between pairs of stations [16] or trip
intention [19]; understanding the impact and effect of
bike sharing systems on other means of transportation
[15] and general system analytics [13, 11]. However, to
the best of our knowledge, our approach is novel in
proposing the use of bike sharing data as a ground



truth source to improve the automatic computation of
biking times at large-scale in platforms such as Google
Biking Directions in Google Maps.

Data and Pre-processing
Bike Sharing Data. Bike sharing systems allow users
to borrow bikes from specific locations (stations), use
them for a short period of time and return them to any
station in the system. Typically, there exist two types of
memberships: subscribers and casuals. Subscribers
are frequent users who pay monthly or yearly fees
while casuals can get daily or weekly passes. The
pricing scheme usually offers the first 30 to 45 minutes
free after which additional fees are charged based on
type of subscription. For this paper, we collected as
ground truth the trip history data from the Capital
Bikeshare system in Washington, D.C. throughout
2013 (1.5M trips). Trip history data contains the
following information for each trip between any pair of
stations: start and end date and time, start and end
station, duration, bike id and membership type.
Additionally, the geographic coordinates for each
station in the system (316) are also provided.
Unfortunately, trip history data does not contain
information regarding the nature/intention of the trip
i.e., we don’t know whether a given trip was a direct,
non-stop trip between two stations or whether the user
made some brief stops along the way without docking
the bike into a station until its final destination.

Google Biking Data. Google Maps offers the
possibility of retrieving biking information between any
two given locations through the Google Directions API.
The output includes, among other variables,
information about the route, the elevation, the distance
or the time it would take to make the trip on a bike. We

collected these variables from Google’s API for all pairs
of stations in the Capital Bikeshare system for which
exists at least one trip. Additionally, the biking time
between any pair of stations might change depending
on the direction of the trip: going from station A to
station B might require biking up a high slope whereas
going in the opposite direction would be a downhill. For
that reason, we collect google’s biking information
between pairs of stations for both directions.

Filters. Google does not fully disclose how biking
times are computed. However, they claim to assume
direct, non-stop trips between origin and destination
when computing trip durations. On the other hand, trips
in bike sharing systems will reflect different types of
behaviors: from direct, non-stop trips whose duration
represents the actual biking time to wandering trips
that might include stops along the way without
re-docking the bike which will increment the total trip
duration loosing accountability for the actual biking
time. To be able to compare google biking times with
crowdsourced times from a bike sharing system, we
need to exclusively focus on direct, non-stop trips
which represent actual biking times. However, since
information about the nature of the trip is not provided
in the bikeshare dataset, we propose to focus our
analysis on what we call commuting trips. We define
commuting trips as biking trips in the bike sharing
system that go from residential to work stations during
weekday mornings. Our assumption is that people
commuting from home to work areas will highly
probably take direct, non-stop routes to get to work as
soon as possible.

To detect commuting trips in a bike sharing dataset, we
propose a two-step process. First, we filter out trips



from casual members who might be more prone to
show wandering behaviors since they are not frequent
users of the system and exclusively focus on
subscribers’ trips. Second, we select all morning trips
that happen from a residential station to a work station.
The final set of trips will be the commuting trips whose
durations we will compare against google’s biking
times. To be able to apply this two-step process we
need to determine which stations in the bike sharing
system can be defined as residential or work stations.
The intuition is that residential stations should observe
a large number of outgoing trips in the morning and
work stations a large number of outgoing trips in the
afternoon from people commuting to and from work
respectively. To identify such behaviors, we propose to
compute for each station in the bikeshare dataset an
activity vector that represents the hourly average of
incoming trips and the hourly average of outgoing trips
throughout all trip data gathered. Formally, the activity
vector for station i is defined as ai(t), t = {1, ..., 48}
where t = {1, ..., 24} represents the hourly average
number of incoming trips to station ai and
t = {25, ..., 48} the hourly average number of outgoing
trips from station i. We normalize the activity vectors
for all stations with the Z-score transformation and use
k-means to cluster them and infer the best distribution
of biking behaviors (clusters) with the Davies-Bouldin
index.

Figure 1 shows the best clustering results (k = 3) using
the Capital bikeshare dataset. Each line represents the
activity vector of a station and the color its cluster
membership: blue, red or green. The x-axis represents
48 hours: the first 24 are for hourly averages of the
number of incoming trips and the last 24 for outgoing
trips’ hourly averages. We observe three clearly

Figure 1: Clusters identifying residential and work locations.

differentiated behaviors: the blue stations show a large
number of incoming trips in the
mornings([6am− 10am]) and a large number of
outgoing trips in the afternoon ([5pm− 10pm]). We
associate this cluster to work stations. The red cluster
shows the opposite behavior: a large number of
incoming trips in the afternoon and a large number of
outgoing trips in the mornings. We associate this
cluster to residential stations. The third cluster (green)
is a mix of both without identifiable behaviors. It is
important to mention that these results are consistent
with the analysis of other bike sharing systems to
understand types of trips [14, 3]. With these results in
hand, we select as commuting trips all subscribers’
trips in the bikeshare dataset that happen between
6am and 10am, whose origin station is labelled as
residential and whose destination station is labelled as
work.

Analysis
In this analysis, we want to evaluate the accuracy of
google biking times using data from a bike sharing
system. Our assumption is that the crowdsourced



information gathered from bike sharing systems
represents the ground truth as opposed to the biking
times computed by Google which are based on a set of
algorithms and assumptions regarding biking
conditions. As stated in the previous section, since the
nature of the biking trips in a bike sharing system can
include wandering behaviors, we exclusively focus on
morning commuting trips and compare these against
their Google counterpart.

Figure 2 shows the distribution of the crowdsourced
biking times versus google’s times for all trips.
Specifically, for each trip and direction, we report its
crowdsourced duration and the google biking time
extracted from Google Directions’ API. Since many
pairs of google’s and crowdsourced times may overlap,
we present the final plot as a heat map where each
square (of size 20x20sec) is colored based on the
number of trips that share a given pair of biking times
within that range. The black line y = x separates trips
with longer crowdsourced biking times (above) from
trips with longer google biking times (below). We can
observe that approximately 20% of the trips show
crowdsourced biking times shorter than the ones
computed by Google. For those trips, the
crowdsourced biking time is, on average, 1.49min
shorter than the biking times reported by Google. On
the other hand, the remaining trips share equal or
longer crowdsourced times than the times reported by
Google which are, on average, 2.10min shorter. Both
differences were statistically significant with p < 0.01
using the Mann-Whitney U test. As a result, it is fair to
say that there might exist certain factors that make
google biking times be a little bit off with respect to the
real biking times extracted from the bike sharing
system. Next, we focus our analysis on the potential

Figure 2: Crowdsourced biking times versus Google biking
Times.

impact of two factors: distance and slope. Our end
objective is to disentangle whether these factors might
play a role in the biking time differences observed
between google times and crowdsourced times.

Distance. To understand the role that distance might
play in the duration of a biking trip, we represent the
distribution of google and crowdsourced biking times
with respect to distance and analyze similarities and
differences between the two. Figure 3 shows the heat
maps for google biking times (gt) (a) and crowdsourced
biking times (ct) (b) for each trip and direction with
respect to distance. Each square represents the
number of trips within a .1mix20sec range.

The Figure shows that as distances increase, the
spread of the time distribution is much larger for the
crowdsourced times than for google biking times. For
example, at 2mi google trips show biking times in the
range [10− 15min] (ḡt = 12min) while the
crowdsourced trips report times between [9− 17min]



(a) (b)

Figure 3: Google and Crowdsourced Biking times versus
Distance.

(c̄t = 13min); and while at 3mi all google biking times
are between [15− 21min] (t̄ = 18min), the
crowdsourced times vary from 14min to 24min
(t̄ = 20min). This trend in the spread becomes more
accentuated for longer trip distances (d ≥ 4mi) where
the time spread is not only larger (with ḡt = 24min vs
c̄t = 26.5min), but also looses its linear relationship
with the distance as shown by the cloud of points at the
tail of the plot 3(b). As distance increases, google
appears to be assuming slightly higher biking speeds
than the real ones and thus computing shorter biking
times on average. Additionally, statistical tests showed
that the differences between google and crowdsourced
times were significant at p < 0.01. These results show
that google does not do a bad job at approximating the
crowdsourced biking times with average differences
within ≈ 2min. However, the longer the biking
distances, the more difficult it is for google to capture
the variance of biking times gathered in the
crowdsourced data.

Slope. To understand the impact that slope might have
on trip biking times, we define two slopes: the ascent
slope and the descent slope. The ascent slope
measures the total upward slope of a route while the
descent slope measures the total descent. To compute
these two slopes, we use the waypoints provided by
Google Directions API and the elevations provided by
Google Elevation API. Specifically, for each pair of
stations and direction in our dataset, we retrieve all
locations (waypoints) in Google’s suggested route and
its individual elevations. We compute the ascent slope
(as) for each pair of stations and direction as the sum
of all the upward slopes in the route:
assti,stj ,dir =

∑Z
1
4y
4x where Z is the number of upward

slopes in the route between stations sti and stj with
trip direction dir; y represents the change in elevation
between two locations in the route and x the horizontal
distance between them. Similarly, we define descent
slope for each pair of stations and direction dssti,stj ,dir
as the sum of all the downward slopes in the route.

Figure 4 shows the heat maps for google (a) and
crowdsourced biking times (b) for different descent
slope values (slope values are scaled as 10/slope for
clarity purposes, which means that smaller x-axis
values are associated to larger slopes). Focusing on
the steepest descent slopes (ds ≥ 5ft, x-axis ≤ 2) we
observe that the largest volume of trips (denser areas
in the heat map) have google biking times in the
[5− 16min] range (ḡt = 10min) whereas crowdsourced
biking times expand across a larger time range
[7− 22min] (c̄t = 15min). These differences were
statistically significant with the Mann-Whitney U test at
p < 0.01. As a result, it appears that Google might be
modeling lower biking times than the real ones for
steep descents. Moving on to flatter descent slope
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Figure 4: Biking times versus Descent Slope.

values, google biking times appear to be approximating
some type of linear relationships between the slope
and the times i.e., smaller descent slopes are
associated to longer biking times with varying slope
coefficients (see the fitted black lines). However, such
relationship is not observed in the crowdsourced biking
times which appear to be much more chaotic, reflected
as a pattern-less cloud of points. On the other hand,
the relationship between biking times and ascent
slopes did not reveal any relevant observation except
for the fact that for extreme ascent slope values
(as ≥ 5ft), google biking times show average values of
b̄t = 18min whereas the values are slightly lower for
the real crowdsourced times with c̄t = 16min. This
result indicates that for extreme ascents, Google is
computing slightly higher biking times than the ground
truth.

Predicting Biking Times
The analysis presented shows that although Google
algorithms tend to capture well crowdsourced biking

times, there are certain scenarios such as
long-distance trips or extreme slopes which are more
prone to temporal differences. Next, we explore
predictive models to enhance current Google biking
time computations taking into account the features
explored in the previous section: distance, ascent and
descent slope. The final objective is to improve
Google’s biking times worldwide using crowdsourced
datasets from existing bike sharing systems.

Given the non-linear nature of some of the features, we
explore two predictive models: Random Forests (RF)
and Support Vector Regression (SVR). We define as
baseline the simplest model: use Google times (gt) to
predict the crowdsourced biking times (ct). And explore
how features such as distance or slope might improve
the prediction accuracy of the crowdsourced biking
times by incorporating them in a more complex
predictive model. Each trip in our training and testing
sets is defined as (ct, gt, distance, ascent, descent)
where ct is the crowdsourced time to be predicted, gt is
the google biking time, and distance, ascent and
descent slope are the specific features for that trip and
direction. We divide the dataset into randomly selected
training (80%) and testing sets (20%) and report the
average correlation between real and predicted values
(r) and the mean-square errors (MSE) across ten runs.
For the RF, we use 5-fold CV to adjust the number of
predictors explored at each step; and we use a 10-fold
CV grid search approach to tune for the SVR
parameters epsilon (ε) and cost (C).

Table 1 shows the predictive accuracy for the baseline
and for the model with the additional features. The first
important observation is that the crowdsourced times
can be predicted quite well simply using Google biking



times (r = 0.93). However, adding the other predictors
to the baseline (distance and slope) improves the
predictive power of the model by 5%: from r = 0.93 to
r = 0.98 for RFs and from r = 0.56 to r = 0.66 for SVR.
Focusing on the best model (RF), we analyze the
importance of the predictors in the trees using the
permutation test. In our case, the importance of the
features (in order) were: Google time (0.96), distance
(0.90), descent (0.014) and ascent (0.009). Interestingly,
the importance confirms the results discussed in the
previous section: distance probably allows to
incorporate the long-distance trips that Google failed to
approximate in the baseline model; and similarly,
although to a minor extent, descent and ascent slopes
might explain the extreme slope cases that the
baseline did not cover. As a result, the final model
improves the predictive power of the baseline by 5%.
Finally, the correlation between the crowdsourced and
the predicted times is not perfect (r = 0.98), which
might reveal that there exist other features that could
be playing a role in the final crowdsourced biking times.
These features can be measurable such as the
weather or more latent like local knowledge e.g.,
”knowing that on a given road it’s safe to turn with a red
light”. Future work will explore these and other
potentially predictive features.

Discussion and Future Work
Our work shows that platforms such as Google Biking
Directions are doing a good job at approximating real,
crowdsourced biking times through automatic
computations. However, we have revealed that there
are certain scenarios such as longer trips or steep
slopes that are harder to model through Google’s
formulas and heuristic rules. To solve that, we have
proposed a predictive model that enhances current

RF SVR
Predictors r MSE r MSE

gt (baseline) 0.93 6689.7 0.56 60812.5

gt,d,as,ds 0.98 2856.47 0.66 50363.1

Table 1: Prediction results for the crowdsourced biking times:
baseline model (google time, gt) and model with gt, distance,
ascent and descent.

google’s biking times computations with respect to real,
crowdsourced biking times extracted from bike sharing
systems. At its core, the model incorporates distance,
ascent and descent slope as predictors and increases
the predictive power of the baseline by 5%. Future
work will expand the analysis to multiple cities and will
evaluate the impact that other measurable and latent
features such as weather might have on improving the
prediction of the real biking times.
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