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Abstract
With the deployment of modern infrastructures for public
transit, several studies have analyzed the transition patterns
of people by using smart card data and have characterized
the areas. In this paper, we propose a novel embedding
method to obtain a vector representation of a geospatial
area using transition patterns of people from the large-scale
data of their smart cards. We extend a network embedding
by taking into account geographical constraints on people
transitioning in the real world. We conducted an experi-
ment using smart card data in a large network of railroads
in Kansai areas in Japan. We obtained a vector representa-
tion of each railroad station using the proposed embedding
method. The results show that the proposed method per-
forms better than the existing network embedding methods
in the task of multi-label classification for purposes of going
to a railroad station. Our proposed method can contribute to
predicting people flow by discovering underlying represen-
tations of geospatial areas from mobility data.
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Introduction
As the use of location-aware personal devices such as
smartphones rapidly spreads, a large amount of mobility
data, including GPS or cell tower logs, has been automati-
cally accumulated [17, 8].

In addition to such personal smart devices, the deployment
of recent infrastructures for public transit such as automated
fare collection (AFC) systems with smart card enables to
collect large volumes of mobility data including people’s ac-
tivities with detailed time and space information [9]. Such
mobility data has been widely used to analyze character-
istics of public transport systems and passenger behav-
iors [13, 16]. More recently, several studies on modeling
and predicting people flow with the mobility data have been
conducted for several purposes of city planning, disaster
prevention, and advertising [3, 9, 16].

Modeling and predicting people flow in a specific area re-
sults in understanding the characteristics or demographics
of the area by combining activity patterns of people with ex-
ternal information about the area [7]. Recent studies have
analyzed transition patterns of people from one area to an-
other using smart card data and characterized the areas or
identified the segmentation of the areas [4, 14]. While these
studies solely assume that an area falls into some pre-
defined demographics based on people flow in the area,
they do not consider any underlying representation of the
area to be characterized. However, if we regard transition
patterns of people on an area as the context of its area, we
could potentially obtain the reprensetaion of the area as
shown in recent studies on representation learning [1].

The basic notion of representation learning is that two en-
tities are semantically similar if they are sharing common
contexts; this is known as a distributional hypothesis in lin-
guistics, which states that words that occur in similar con-

texts tend to have similar meanings [5]. That idea of repre-
sentation learning has been recently expanded to a network
embedding method [6, 12] that tries to solve the problem of
embedding networks into low-dimensional vector spaces by
assuming that two nodes are similar if they are closely con-
nected in a network. Network embedding is useful in tasks
such as visualization, node classification, and link predic-
tion. In the case of embedding geographical areas, if we
consider areas as nodes and transition patterns of people
between areas as links, we can formalize the problem of
embedding geospatial areas as an extension of studying
the embedding of a network. Intuitively, transition patterns
of people in a business district are different from those in
a residential district. Therefore, we can distinguish those
different types of geospatial areas by embedding a people
transition network in our low-dimensional vector spaces.

However, we can not simply apply existing network em-
bedding methods to our problem of embedding geospatial
areas. In the case of people transitioning in a large network
of transportation systems such as railroads, there exist sev-
eral geographical constraints on the transition. For example,
a person who lives around Esaka Station goes shopping at
Umeda Station but not at Tennoji Station despite the fact
that people go to both Umeda and Tennnoji stations for sim-
ilar purposes. The reason is that Tennoji Station is further
than Umeda from Esaka Station1. We can assume that
people usually tend to minimize their transitions depend-
ing on their purpose of activities and given available means
of transportation on their current locations. If we consider
geospatial areas as a network, which is connected with
links of people transition patterns between areas, and try
to embed the network in a low-dimensional vector space
to obtain representations of the areas, we have to take into

1See the train route map in Figure 1



account such geographical constraints on people’s tran-
sitions in a real world. In this paper, we propose a novel
embedding method to obtain a vector representation of a
geospatial area using transition patterns of people from
large-scale data of smart cards. We describe the purpose
to go to a station as a station role. Considering geograph-
ical constraints, we can collect distant stations which play
similar roles in each area. It will be useful for a city planner
or a marketer to find strong and weak characteristics with
each area.

We conducted an experiment using smart card data in a
large network of railroads in Kansai areas in Japan. We
obtained a vector representation of each railroad station
using the proposed embedding method and evaluated our
embedding method in the task of multi-label classification
for purposes to go to a railroad station.

Our contributions in this paper is two-fold:

1. We propose a novel embedding method to obtain
a vector representation of a geospatial area using
transition patterns of people from large-scale data of
smart cards.

2. We demonstrate that our proposed method can col-
lect distant areas where people come for the same
purpose.

Related Works
Modeling the characteristics of spatial areas using mobility data
Several studies on modeling and predicting people flow with
the mobility data have been recently conducted for several
purposes of city planning, disaster prevention, and adver-
tising [3, 10, 16]. Modeling and predicting people flow in a
specific area results in understanding the characteristics of

the area. Recent studies have analyzed transition patterns
of people from one area to another using smart-card data
and characterized the areas or identified the segmentation
of the areas [4, 15]. While these studies solely assume that
an area falls into some pre-defined demographics based on
people flow in the area, they do not consider any underly-
ing representation of the area to be characterized. In this
paper, we try to obtain a vector representation of a geospa-
tial area using the transition patterns of people from large-
scale data of their smart cards, and we collect distant areas
which play similar roles.

Studies on the network embedding
With recent advances in representation learning, an embed-
ding method has been recently applied to network data to
solve the problem of embedding networks into low-dimensional
vector spaces [6, 11, 12]. In this paper, we can formalize
our problem of embedding geospatial areas as an exten-
sion of learning the embedding of a network. When people
transition in a large network of transportation systems such
as railroads, there exists several geographical constraints
on the transition. We can assume people tend to minimize
their transitions depending on their purpose of activities
given available means of transportation at their current loca-
tions. We introduce an embedding method for a geospatial
area by taking into account factors such geographical con-
straints on people transitioning in the real world. We evalu-
ated our proposed method with actual, large-scale, mobility
data from smart cards.

Method
First, this section describes the geographical constraints
model in which the people flow is derived from geolocation
and purpose. Next, we explain how the network develops
from massive people flow and the necessity of label propa-
gation on the network. Finally, we propose a representation



Geographical constraints (𝐺𝑠𝑐) Purpose proximity (𝐺𝑠𝑟) People flow (𝐺𝑠𝑠)

＋ ＝

vector representation

𝑢𝑠𝑐 =（●，●，・・・，●，●） 𝑢𝑠𝑟 = （○，○，・・・，○，○） 𝑢𝑠𝑠 = （●，●，・・・●，● ，○，○，・・・，○，○）

vector representation vector representation

Figure 1: Schematic of the geographical constraints model and the vector representation.

learning algorithm based on this constraints model and ex-
plain it precisely.

Geographical Constraints model
We assume that people tend to minimize their transitions
depending on the purpose of their activities and the avail-
able means of transportation at their current location. We
model this assumption with the geographical constraints
model, as shown in Figure 1. This model is composed of
three components. The first one is the geographical con-
straints (Gsc), which describe the geographical proximity,
such as a subway route map. In this paper, we adopt the
station–company graph because we regard stations that
belong to the same company as being part of same re-
gion. The second one is the purpose proximity (Gsr), for
which we adopt the station–role graph that describes the
purposes for which people go to each station. The last one
is the people flow, (Gss), in which we adopt the getting-on-
and-off network that describes the people transition rate
between two stations, with direction.

In this model, we design that the geographical proximity and
the purpose proximity generate the people flow. We think
that the three networks’ relationship depends on the dis-
tance on the latent vector representation. There are three
graphs that do not mutually share their vectors: u⃗ss

i for all
vertices vi ∈ Gss, u⃗sc

i for all vertices vi ∈ Gsc, and u⃗sr
i

for all vertices vi ∈ Gsr. We lead to the following equation
from the schematic of our geographical constraints model
shown in Figure 1 and these vetor representatons.

u⃗ss
i = u⃗sc

i + u⃗sr
i (1)

In this paper, we interpret the operator “+” as connecting
two vectors and producing a new vector with dimensions
that are twice as numerous as the number of dimensions
of each vector, not that we add each element in the two
vectors.

Learning algorithm
Based on the geographical constraints model, vector repre-
sentations are acquired by the learning algorithm shown in



Table 1: Learning Algorithm

Learning Algorithm
1: Input: Gsc, Gsr, Gss, T, ρ0,K.
2: Output: u⃗sc, u⃗sr, u⃗ss.
3: Initialize each vector u⃗sc, u⃗sr, u⃗ss, u⃗′sc, u⃗′sr, u⃗′ss.
4: for t = 1 to T
5: Sample an edge escij from Gsc.
6: Load u⃗sc

i and u⃗′sc
j from the corresponding

part of u⃗ss
i and u⃗′ss

j .

7: Update u⃗sc
i and u⃗′sc

j using the objective function Osc.

8: Overwrite the corressponding part of u⃗ss
i and u⃗′ss

j with u⃗sc
i and u⃗′sc

j .
9: Sample an edge esrij from Gsr.

10: Load u⃗sr
i , u⃗′sr

j from the corresponding

part of u⃗ss
i and u⃗′ss

j .

11: Update u⃗sr
i and u⃗′sr

j using the objective function Osr.

12: Overwrite the corressponding part of u⃗ss
i , u⃗′ss

j with u⃗sr
i , u⃗′sr

j .
13: Sample an edge essij from Gss.
14: Update u⃗ss

i and u⃗′ss
j using the objective function Oss.

15: END

Table 1. This algorithm needs the geographical constraints
network (Gsc), the purpose proximity network (Gsr), the
people flow network (Gss), the number of sampling (T ), the
initial learning rate (ρ0), and the number of negative sam-
pling (K) as input. We apply the network embedding model
called the "LINE(2nd) model” proposed by Tang et.al [12].
This model approximates second-order proximity between
two vertices, optimizing each representation vector. The
objective function is as follows:

O = −
∑

(i,j)∈E

wij ln p(vj |vi) (2)

In this equation, wij indicates the empirical edge weight
from the vertex vi to the vertex vj . p(vj |vi) which is the
transition probability from vi to vj is estimated using the
embedding vector u⃗i of the vertex vi and the context vector

u⃗′
j of the vertex vj as following:

p(vj |vi) =
exp(u⃗′T

j · u⃗i)∑
k′∈|V | exp(u⃗

′T
k′ · u⃗i)

(3)

We set this objective function for three networks individually
and acquire vertex embedding vector sequentially (Line
7,11 and 14) based on the geographical constraint model
(Line 8 and 12).

Data Description
In this paper, we conducted experiments with two datasets.
One is the getting on and off dataset, and the other one is a
dataset of the purpose of use of some main stations. In this
section, we explain these two datasets.

The getting on and off dataset
Experiments are carried out using the getting on and off
dataset of the IC card user. The six railway companies in
Japan’s Kansai region provide this dataset. The providers
anonymise this dataset. The contents of the dataset mainly
consist of six elements: each user’s gender, age, getting on
and off date and time, and boarding and destination station.
The summary of this dataset is shown in Table 2.

Table 2: Overview of the getting on and off dataset．

Starting date March 01, 2015
Ending date March 31, 2015
Total number of records 50,925,951
The number of unique users 2,007,507
The number of variety of stations 672
The number of railways companies 6



The purpose of use dataset
This study aims to estimate the role of each station. We
took the approach of conducting a questionnaire. The ques-
tionnaire was carried out by Lancers2, a crowdsourcing
service in Japan. The respondents were regular users of
each railway company. The time span was two weeks from
March 23, 2016. The target stations were limited to the top
100 that have a large number of passengers. Respondents
were asked to select three stations, from each railway com-
pany, that satisfy the following criterion/purpose: the near-
est, commuting or attending school, transit, shopping, din-
ing, and entertainment. As a result, we got 2,219 question-
naire results for 96 stations from the total 223 users. In this
experiment, we used two results (the nearest, shopping).

Experiment and Result
In this section, we evaluate the effectiveness of our pro-
posed model for geospatial people flow data. For this pur-
pose, we conduct an experiment to collect data from distant
areas to which people come for the same purpose. We de-
scribe the experimental setting and show the result here.

Input data
We arrange these datasets to input and for experiments.
The station–company graph is a graph representing which
company a station belongs to. It is an undirected graph, and
the weights of all edges are equal. The station–role graph is
a graph representing the distribution of purposes for people
to go to a station. It is an undirected graph, and the weights
of each edge are P (role|station). In other words, the total
of all roles for each station is normalized by 1.0. Finally, the
getting on and off graph is a graph showing the people get-
ting on and off between two stations. It is a directed graph,
and the weight of each edge is P (destination|boarding).
That is the sum of the number of users moving from one

2http://www.lancers.jp

boarding station at all getting-off stations, which is normal-
ized by 1.0. The station–company garph and the getting on
and off graph is made from the getting on and off dataset,
and the station–role graph is made from the pupose of use
dataset.

Experimental procedure and parameter setting
We input three network graphs in the former subsection.
We evaluate our proposed method effectiveness compared
with the PTE method [11]. The PTE method is the latest
network embedding method for a heterogeneous network.
This method applies to three different networks which are
the word–word, word–document, and word–label networks
and can acquire each word, document, and label vector
representation. They propose two learning styles, which
are the “pre-train” and “joint” learning styles. We select the
“joint” learning style, which is slightly better than the pre-
train learning style in their report (PTE(joint)). This method
can embed all vertices in three network graphs to the same
vector spaces. The same vertex in different graphs has the
same vector representation among all graphs. This is dif-
ferent from our proposed model, which embed vertices in
three network graphs to different vector spaces.

As described in this paper, we conducted a multi-label clas-
sification experiment for station roles. Estimating the role of
the station is carried out by a multi-label classification using
one-vs-rest SVM3 method using the learned vector and the
tagged role label to a station as the training data. We ap-
ply two cross-validations for the station–role data. In other
words, Gss and Gsc are used all for the sake of training, but
we select the half randomly from the station–role data for
the Gsr training data, and the remaining to the test data.
Then, we compare the estimation results between the PTE

3We use the “LIBSVM” package [2].



method and the proposed method. We measure the classi-
fication performance with the Macro and Micro metrics.

Finally, it is evaluated by the geographical location of the
actual station which is near the vector representation of
each role label. The evaluation metric is the average value
of the standard deviation of the actual geolocation of sta-
tions near the role label vector. As the mean of the stan-
dard deviation of the nearby stations around the role label
is larger, the station group is extracted for the role of the
station without the geographical constraints.

Other parameter settings are as follows. We set the total
number of sampling size T = 100, 000, and the SGD learn-
ing rate ρt = ρ0(1 − t/T ), ρ0 = 0.05. The number of
negative sampling K is set as 5. The dimensionality of a
vertex vector is set as 100, but in the proposed method,
u⃗ss
i , u⃗′ss

i has twice the number of dimension; that is 200. All
these parameter settings are the same in the PTE method
and in the proposed method.

With the PTE method, we use the “joint training” version.
And the word–word network is set as the getting on and off
network, the word–document network is set as the station–
company network, and the word–label network is set as the
station–role network in the experiment.

Table 3: A result of the role estimation (mean value of 2
cross-validations)

method
Macro Micro

Precision(%) Recall(%) F1-value(%) Precision(%) Recall(%) F1-value(%)
PTE(joint) 30.556 45.833 36.376 57.190 57.190 57.190
proposed(u⃗sc

i ) 31.536 50.000 38.547 63.072 63.072 63.072
proposed(u⃗sr

i ) 31.076 47.917 37.500 60.131 60.131 60.131
proposed(u⃗ss

i ) 31.536 50.000 38.547 63.072 63.072 63.072

Table 4: the standard deviation of station location around each
role vector

method
near@10 near@50

role:“nearest” role:“shopping” role:“nearest” role:“shopping”
long SD lat SD long SD lat SD long SD lat SD long SD lat SD

PTE(joint) 0.097 0.023 0.074 0.023 0.129 0.124 0.148 0.118
proposed(u⃗sc

i ) 0.444 0.180 0.124 0.114 0.346 0.147 0.388 0.138
proposed(u⃗sr

i ) 0.024 0.031 0.024 0.031 0.471 0.142 0.311 0.104
proposed(u⃗ss

i ) 0.513 0.172 0.475 0.168 0.459 0.169 0.396 0.131

Results
We show in Table 3 the results of estimating the role of
the station. In Table 3 and 4, we present one PTE result
(PTE(joint)) and three proposed method results (proposed(u⃗sc

i ),
proposed(u⃗sr

i ), and proposed(u⃗ss
i )). This is caused by each

method output. Though the PTE method embeds all ver-
tices to the same vector space, our proposed method em-
beds all vertices to three different vector spaces. So each
vertex has one vector representation on the PTE method
and three vector representations (u⃗sc

i , u⃗sr
i , and u⃗ss

i ) on the
proposed method. This result compares the performance of
station role estimation on the large-scale mobility data be-
tween the PTE method and the proposed method. We can
see that the proposed (u⃗ss

i ) performs the best of all other
methods. The performance of PTE (joint) is inferior to all
proposed methods.

We show in Table 4 the results of the standard deviation of
station location around each role vector. This result com-
pares the performance of station mapping around each role
vector. We can see that the longitude standard deviation
(SD) is bigger than latitude SD because this railway net-
work is longer from east to west than from north to south.
We can see that the proposed (u⃗ss

i ) method has bigger
standard deviation value than other methods on average.



The proposed method embeds distant stations to the place
around each role.

Consideration
As described in Section Results, our proposed method
achieve better results than the PTE method. These results
indicate that, for large-scale movement data that has spatial
dependence, the proposed method captures the character-
istics of the role of each station better than the PTE method
does. People’s moving area is usually small, so they live in
limited areas. In light of this geographical constraints, our
proposed method works better than the PTE method.

These results indicate that, in large-scale movement data
that has the spatial dependency, the proposed method cap-
tures well the characteristics of the role of each station,
compared to the PTE method.

On the other hand, our proposed method (u⃗sr
i ) results are

not the best results on the station role estimation and the
station geolocation SD. Our research aims to decompose
the effect of geographical constraints and purpose prox-
imity completely. So, we think these results show that our
research has considerable room for improvement, which
leave future work.

Summary
In this paper, we proposed a novel embedding method to
obtain a vector representation of a geospatial area using
transition patterns of people from large-scale data of smart
cards. We showed that the proposed method estimated
the role of the station better than the heterogeneous net-
work embedding method, PTE. In the future, there will be
a need to carry out a multi-faceted evaluation or apply the
proposed method to other datasets. Also, the proposed
method can be regarded as simultaneous learning of vector

representations of multiple graphs.
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