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Abstract 
Commuting is recurring travel between home and 
workplace, which accounts for most trips made daily. 
Understanding commuting patterns and flows is 
therefore essential for city and transport system design 
and planning. Traditionally, commuting flow information 
was collected using surveys and interviews, which are 
expensive and time-consuming. This paper introduces a 
way to extract commuting flow and route choice 
information from analyzing mobile phone 
communication logs. We present two new methods for 
inferring individual commuting route choice, which 
collectively constitutes city-level commuting flows. Both 
morning and evening flows are inferred and visualized. 
We believe that our methods and results are useful and 
contributing to both theory and practice, especially in 
the interdisciplinary field of urban computing and city 
science.   
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Introduction 
Today’s mobile phone is not just a communication 
device anymore. It has evolved significantly over the 
past few years with its additional advanced sensing 
technologies and useful features for handheld use, 
which makes it a dispensable part of our everyday 
lives. With its high penetration rate, a mobile phone is 
being carried by almost everyone these days. When 
connecting to the cellular network for voice, short 
message (SMS), or data services, communication logs 
are collected by the telecom service providers for billing 
purposes, in forms of the Call Detail Records (CDR) 
where each record contains a timestamp, 
corresponding communication activity (e.g., voice, 
SMS, or data), and location of the connected cellular 
tower. To use the service, the mobile phone thus needs 
to connect to the cellular network via the nearest 
cellular tower. Therefore, each time when the user 
connects for the cellular service, the user’s 
communication and location information are recorded. 
Collectively, CDRs constitute a longitudinal behavioral 
data that can be analyzed methodically to reveal and 
understand various aspects of human behavior at 
different aggregate levels both in time and space. 

Mobile phone data has a great advantage over the 
traditional human behavioral datasets that are mostly 
collected through surveys and interviews, which could 
be inaccurate, limited, expensive, and time-consuming. 
With the location traces of individuals, the CDR data 
can be used to advance research in human mobility, 
which is important for understanding transport behavior 
that requires a massive amount of data to truly explain 
or model each phenomenon with interdependent 
properties. Several studies benefited from the use of 
CDRs in human mobility research have yielded 

interesting findings. For instance, Song et al. [5] found 
that human mobility is highly predictable, showing an 
upper bound of 93% predictability that significantly 
reveals regularity in human movement. 
Phithakkitunukoon et al. [3] further show that human 
mobility is greatly influenced by social networks, as 
they found that 80% of the places that we visit are 
within just 20 km from a person we know, and we are 
15% more likely to be traveling near our weak ties than 
strong ties. Not only the destinations that we travel to, 
but how we travel there is also influenced by our social 
networks as Phithakkitnukoon et al. [4] show that 
strong ties are more important to determine if driving is 
the person’s transport mode choice, whereas weak ties 
are more important to determine if public transit is the 
person’s choice. Understanding human mobility has a 
useful implication in transport system design and 
planning. Demissie et al. [1] show that CDRs can be 
used to infer travel demands that facilitate public 
transport network design, especially for developing 
countries where traditional travel surveys are costly 
and infeasible.  

CDR-derived mobility pattern is shown to be a 
reasonable alternative – arguably is perhaps a better 
option because the results are not biased by the 
subjectivity of the surveyed participants’ perception. 
Commuting (traveling between one’s place of residence 
and place of work) is the most frequent and common 
trip made by a typical person, which collectively makes 
up the profound mobility flow patterns that often define 
the core mobility characteristic of the area – generally, 
morning flows (residence to workplace) and evening 
flows (workplace to residence). Commuting flows are 
therefore important for transport design and planning. 
Extending from our previous study [4], from the point 



 

of view of inferring individual commuting trips based on 
CDR data, in this paper we introduce two methods to 
determine routes used in both directions, which 
consequently makes up an individual commuting 
pattern. In addition, this paper also presents our 
developed visualization tool that graphically shows the 
preprocessed CDR information, individual inferred 
commuting route choices, and the city-level commuting 
flows.    

Data Description and Processing 
The CDR data used in this study was a set of 
435,701,811 communication logs over one-year period 
(April 2006 to March 2017) from 1.3 million mobile 
phone users (1,318,905) in Portugal. The data 
accounted for approximately 13% of the population and 
was collected for billing purposes from all 308 
municipalities of Portugal by one of the European 
telecom operators. To safeguard personal privacy, 
individual phone numbers were anonymized by the 
operator before leaving their storage facilities and were 
identified with a security ID (hash code). The CDR 
comprised the voice call information: timestamp, 
caller’s ID, callee’s ID, call duration, caller’s connected 
cellular tower ID, and callee’s connected cellular tower 
ID. The dataset did not contain information relating to 
text messages (SMS) or data usage (Internet). The 
location of the mobile phone user was recorded as the 
nearest connected cellular tower location when the 
users made or received a call. The dataset provided us 
with mobility characteristics of the mobile phone users 
over an extensive temporal window of observation. 
There were over 6500 cell tower locations in total, and 
each on average serves an area of 14 km2, which 
reduces to 0.13 km2 in urban areas such as Lisbon and 
Porto.  

Based on our data, on average, a user makes 173 
connections monthly (approx. 8 connected calls daily) 
to the cellular network – i.e., how frequent the mobile 
user location is recorded (becomes known). The users 
connected to the cellular network using on average 98 
different cell towers throughout the year. The 
histograms of the call frequency and mobility (number 
of visited cell towers) are shown in Figs. 1 and 2.   

As our study focuses on the commuting trips, so we 
first needed to identify a most probable place of 
residence (home) and work. We adopt the approach in  
[3] that infers the user’s home location proximity based 
on the location of the most frequently used cell towers 
during nighttime (10PM – 7AM), and workplace based 
on the location of the most frequently used cell towers 
during business hours (9AM – 5PM). With this 
approach, our estimated home locations are 
comparable with the census population density with the 
correlation value of 0.89, as shown in Fig. 3. 

In this preliminary research work, we focused our study 
to only analyzing commuting flows within the city 
Lisbon. To obtain the call history within the area of 
Lisbon, we filtered the entire CDR data with the 
following constraints: 

§ Each record must be an incoming or outgoing call 
established to and from Lisbon. 

§ Each record must be during weekdays (Monday - 
Friday). This is to filter only for weekday mobility 
data as most commuting trips take place on a 
weekday. 

 

 
Figure 1: Histogram of call 
frequency. 

 
Figure 2: Histogram of mobility. 

 
Figure 3: Correlation between 
the CDR-based population density 
and the census’s. 

 



 

§ Each user must be connected to the cellular network 
at least five times each month. This is to ensure fine-
grained mobility traces. 

§ Each user must have at least 100 total connections 
during the morning commuting hours (7AM – 11AM) 
and 100 connections during the evening commuting 
hours (3PM – 7PM). This is to ensure an efficient 
amount of CDRs for our commuting trip analysis.   

 
This data filtering process yielded a total of 6,813 
mobile users for our study. As a technical note, since 
we were dealing with a big data here, we used Google 
BigQuery1 as a tool for data processing and Google 
Cloud Storage2 for quick and easy data retrieval and 
export.  

Commuting Route Inference  
We had inferred home and workplace locations for each 
user in Lisbon. Our goal was to identify the route that 
was likely to be used for commuting between home and 
workplace. Following [4] and [6], we used the 
Directions API3 of the Google Maps Platform to first 
generate route choices for each user given the inferred 
home and workplace locations. This simplifies our 
problem into choosing the most probable route used 
among the suggested route choices by using the user’s 
mobile phone usage history (i.e., locations and 
frequency) as a clue. An example is shown in Fig. 4 
where there are three commuting route choices. The 
user’s home and workplace are marked with ‘A’ and ‘B’, 
respectively. Call history consists of morning-hours 
                                                   

1 https://cloud.google.com/bigquery/  
2 https://cloud.google.com/storage/  
3 https://developers.google.com/maps/documentation/directions  

connectivity (7AM – 11AM) and evening-hours 
connectivity (3PM – 7PM), which are marked with red 
and blue circles, respectively. The size of the circle 
corresponds to the amount of connections at the 
location.  

 
Figure 4: An example of commuting route choices (3 routes) 
of a mobile phone user, along with cellular network usage 
history (morning connectivity is in red, evening connectivity is 
in blue). Home is marked with ‘A’ and workplace is marked 
with ‘B’. 

To infer the commuting route, we proposed two 
methods: 

Method A: Minimum Distance 
The idea of this Method A is to select the route with the 
minimum distance to locations of the visited or used 
cell towers by the user. This method lies on the 
possibility of the user using his/her mobile phone to 



 

connect to the cellular network from different locations 
along his/her commuting route throughout the year.  

Basically, this method calculates an average distance of 
each route choice and selects the one with the 
minimum value. Supposed that Xk is a set of the 
geographical coordinates (latitude, longitude) or 
waypoints obtained from the Google Directions API of 
the route k, i.e., 

𝑋" = { 𝑥&'(), 𝑥&'+, , 𝑥-'(), 𝑥-'+, , 𝑥.'(), 𝑥.'+, , … , 𝑥,'(), 𝑥,'+, },    (1) 

where 𝑥1'(), 𝑥1'+,  is a latitude-longitude pair of the 
waypoint v and the total number of waypoints is n. Let 
Y be a set of visited cell tower location coordinates, i.e.,  

𝑌 = { 𝑦&'(), 𝑦&'+, , 𝑦-'(), 𝑦-'+, , 𝑦.'(), 𝑦.'+, , … , 𝑦4'(), 𝑦4'+, },    (2) 

where 𝑦5'(), 𝑦5'+,  is a latitude-longitude pair of the cell 
tower location u and the total number of previously 
visited cell towers is m. The route to be chosen (k) is 
the one that minimizes the average Euclidean distance 
(D) i.e.,  

arg	min
"∈{&,-,…,,}

𝐷 = &
,4

𝑥?'() − 𝑦A'()
- + 𝑥?'+, − 𝑦A'+,

-4
AC&

,
?C&   (3) 

This method however has a drawback. The waypoints 
obtained from the Google Directions API do not equally 
spread along the route. A straight line would be 
represented with two waypoints at one of the ends. 
Curving part of the route would consist of more 
waypoints than a straighter part of the route, as shown 
in in Fig. 5. Therefore, when calculating D the curving 
portion of the route dominates the result. An example 
is shown in Fig. 6 where each red line represents the 

Euclidean distance from a waypoint along the route to 
one visited cell tower. Denser lines can be observed 
near curving part of the route. For this reason, the 
result from the method A favors the route with visited 
cell towers closer to the curving part of the route.  

 
Figure 5: An example of waypoints that are denser at curving 
part of the route. 

 
Figure 6: An example of calculating a distance from each cell 
tower location to waypoints along the route. Denser lines 
(distance measures) can be observed near curving part of the 
route. 



 

Method B: Maximum Overlap 
To resolve the issue of inconsistent waypoints 
distribution along the route, we proposed another 
method that interpolates and extrapolates the 
waypoints to normalize the spacing between them. We 
do so by simply using grids as reference and create a 
new data point to represent a waypoint at the centroid 
of the grid within which the route passes by. An 
example is shown in Fig. 7 where red dots are the new 
data points created by this interpolation/extrapolation 
process to replace the original waypoints represented 
by blue dots.       

 
Figure 7: An example of our interpolation/extrapolation 
process of waypoints along the route by using grids. Blue dots 
are the original waypoints and red dots are the result of the 
interpolation/extrapolation process.  

As opposed to the minimum distance to cell towers 
calculation, we created the coverage area of each used 
cell tower, so the route that maximizes the overlap 
area with the used cell tower coverages is to be 
selected. The average coverage distance of all used cell 
towers by the user was used as the coverage area for 
each cell tower for this calculation. Mathematically, 
suppose that Wk is a set of processed waypoints of 
route k, i.e.,  

𝑊" = { 𝑤&'(), 𝑤&'+, , 𝑤-'(), 𝑤-'+, , 𝑤.'(), 𝑤.'+, , … , 𝑤F'(), 𝑤F'+, } (4) 

where 𝑤1'(), 𝑤1'+,  is a latitude-longitude pair of the 
processed waypoint v and the total number of 
waypoints is p. The route to be chosen (k) among n 
alternative routes is the one that maximizes the overlap 
cardinality (𝑂) or the set elements of O, i.e.,  

arg	max
"∈{&,-,…,,}

𝑂 = |{𝑊"|∃	𝑣: 𝑤1'(), 𝑤1'+, ∈ 𝐶}|,               (5) 

where O is an overlap, which is defined as a set of all 
waypoints that are located inside the coverage area of 
cell towers (C), i.e., 𝑂 = {𝑊"|∃	𝑣: 𝑤1'(), 𝑤1'+, ∈ 𝐶}. An 
example of using this Method B in choosing the 
commuting route (with grid size of 10 meters) is shown 
in Fig. 8 where each red marker is the element in set O 
or the waypoint located inside the cell towers’ coverage 
area. The number of red mark thus is the overlap 
cardinality (𝑂), which is to be maximized.  

 
Figure 8: An example of using Method B for choosing the 
commuting route that maximizes the overlap cardinality.  



 

Visualization Tool and Commuting Flows  
In this study, we’ve developed an online visualization 
tool for our analysis. We built the tool with Google 
Firebase4 as a database server and Google Maps API5 to 
display map, shapes, and markers. The tool is available 
at http://myweb.cmu.ac.th/thanisorn_ju/index.html. A 
snapshot of the online tool is shown in Fig. 9. The tool 
allows the user to select to view an individual user’s 
CDR-based information such as morning (Day) and 
evening (Night) connectivity with associated locations, 
inferred home and workplace locations (marked with A 
and B, respectively), route choices, selected route 
based on methods A and B, and the overall commuting 
traffic flows. 

 
Figure 9: A snapshot of our online visualization tool.  

In most of the cases, the methods A and B yield the 
same route choices. However, there are a few cases 
where their selections differ. 

                                                   
4 https://firebase.google.com  
5 https://developers.google.com/maps/documentation/  

For example, in Fig. 10, the tool shows the selected 
morning commuting route (trip from home to 
workplace) based on the Methods A and B, which is 
shown with blue and red lines respectively. Each 
method selects a different morning route for this user. 
In Fig. 11, with the same user, the selected evening 
commuting route (trip from workplace to home) is the 
same one from both methods. Interestingly, this 
evening route appears to be different from the morning 
route. This case seems to support the concept of 
asymmetry in travel behavior [2], which states that 
people change their route approximately 15% of the 
time, even in their commuting trip.  

Each of individual commuting trips collectively makes 
up the commuting traffic flows, which are very 
important to understand for traffic design and planning. 
In Fig. 12, our visualization tool shows all selected 
morning commuting routes of all 6,813 mobile users, 
which illustrates the overall morning commuting flows 
in the city of Lisbon, based on Method A. Likewise, Fig. 
13 shows the evening commuting flows based on 
Method A. Similarly, the morning commuting flows and 
the evening commuting flows based on the Method B 
are shown in Figs. 14 and 15, respectively. Slightly 
different commuting flows in the morning and evening 
can be observed. This information is a useful insight 
that can benefit a range of stakeholders. 



 

  
Figure 10: An example of the tool showing the selected 
morning commuting route by Methods A and B, with blue and 
red lines respectively.  

  
Figure 11: An example of the tool showing the selected 
evening commuting route by Methods A and B, with blue and 
red lines respectively. Same route is selected by both methods.  

  
Figure 12: Morning commuting flows (home to workplace) in 
Lisbon, based on Method A.  

  

Figure 13: Evening commuting flows (workplace to 
home) in Lisbon, based on Method A. 



 

  
Figure 14: Morning commuting flows (home to workplace) in 
Lisbon, based on Method B.  

  

Figure 15: Evening commuting flows (workplace to 
home) in Lisbon, based on Method B. 

Although the result obtained in this study cannot be 
realistically validated against the ground truth 
information, we still believe that the result is valid to a 
certain extent. The result and its methodology can be 
used to support decision making, design, and planning 
of urban space.  

Conclusion 
This study turns typical mobile phone communication 
logs collected from billing purposes into useful insight 
about the routes people use to commute from home to 
workplace in the morning as well as in the evening 
when people travel back home from their workplaces. 
Transport engineers and researchers typically spend a 
huge budget to obtain such information regarding route 
choices of commuters. Here, we introduce methods to 
extract the commuting route information from CDR 
data. We introduced two methods to infer individual 
commuting route based on the mobile phone 
communication history. One method aims at minimizing 
the distance between the route and the historic 
locations where communications were made. The other 
method aims at maximizing overlap area between 
interpolated/extrapolated waypoints along the route 
and the location proximity where communications were 
made. We’ve also developed an online visualization tool 
for our analysis to view intermediate (i.e., individual 
commuting route) as well as final results (i.e., 
commuting flows).  

Nonetheless, there are some limitations to our current 
study, which will be addressed in our future work that 
include incorporating call frequency into our inference 
model and integrating both Methods A and B. We will 
continue with this investigation, which we believe is 
useful and contributing to both theory and practice in 
interdisciplinary domains such as urban computing, 
intelligent transportation systems, and city science. 
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