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ABSTRACT
Intelligent public transportation systems are the cornerstone

to any smart city, given the advancements made in the field

of self-driving autonomous vehicles – particularly for au-

tonomous buses, where it becomes really difficult to system-

atize a way to identify the arrival of a bus stop on-the-fly for

the bus to appropriately halt and notify its passengers. This

paper proposes an automatic and intelligent bus stop recog-

nition system built on computer vision techniques, deployed

on a low-cost single-board computing platform with mini-

mal human supervision. The on-device recognition engine

aims to extract the features of a bus stop and its surrounding

environment, which eliminates the need for a conventional

Global Positioning System (GPS) look-up, thereby alleviating

network latency and accuracy issues. The dataset proposed

in this paper consists of images of 11 different bus stops taken

at different locations in Chennai, India during day and night.

The core engine consists of a convolutional neural network

(CNN) of size ∼260 kB that is computationally lightweight

for training and inference. In order to automatically scale and

adapt to the dynamic landscape of bus stops over time, incre-

mental learning (model updation) techniques were explored

on-device from real-time incoming data points. Real-time

incoming streams of images are unlabeled, hence suitable

ground truthing strategies (like Active Learning), should

help establish labels on-the-fly. Light-weight Bayesian Ac-

tive Learning strategies using Bayesian Neural Networks

using dropout (capable of representing model uncertainties)

enable selection of the most informative images to query
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from an oracle. Intelligent rendering of the inference mod-

ule by iteratively looking for better images on either sides

of the bus stop environment propels the system towards

human-like behavior. The proposed work can be integrated

seamlessly into the widespread existing vision-based self-

driving autonomous vehicles.
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1 INTRODUCTION
Buses are a widespread mode of transportation that are used

by the majority of the public. Recently, according to APTA

2019 [1], over 47% of people use buses as their preferred

public transport mode in the United States, while 76% of

buses have automatic bus stop announcements. In a country

like India, conventionally the conductor of the bus intimates

(whistles) when a bus stop arrives and announces its location

aloud, while the driver halts the bus. This scenario still exists

in most buses in India, however, with increase in automatic

announcing mechanisms like pre-defined queues which have

been widely followed – wherein the sequence of bus stops

are stocked initially, this seems to be an easier alternative to

the conductor’s manual announcement of bus stops.

With the recent advancements and innovations in self-

driving autonomous vehicles (buses) which are mostly based

on state-of-the-art computer vision techniques, it becomes

https://doi.org/10.1145/3341162.3349323
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an increasing necessity to not only know the sequence of

bus stops, but intelligently perceive where the bus stop ex-

actly is, in order for the bus to halt at the right place. Many

current bus stops in India, particularly rural and suburban

bus stops predominantly do not have bounded or localized

spaces/lanes. The surroundings of the bus stops also dynam-

ically change and evolve over time. Moreover, bus routes

are periodically revised and bus stops also change based on

demand and traffic patterns. This calls for an intelligent tran-

sit system to not only identify bus stops automatically, but

to incrementally adapt on-device to the new dynamic sur-

roundings of the bus stops on-the-fly with minimal human

intervention, and intimate passengers about the same. To

reduce the overhead of capturing images during the whole

route during inference (classification of bus stop), we pro-

pose that the images are captured only when speed of the

bus is below a certain ideal threshold, only after which the

inference engine would capture and classify an image. The

real-time speed can be acquired from the speedometer of the

bus and the ideal minimum threshold (10 km/hr for instance)

is subject to locality and traffic conditions.

Global Positioning System (GPS) look-up can be used bus

stops identification, however latency issues in the network,

along with accuracy and privacy concerns make GPS look-up

disadvantageous. Also, it might be hard to localize, identify

and halt the vehicle right in front of the bus stop using GPS.

Thus, in order to address and alleviate the aforementioned

concerns, we propose a novel on-device vision-based so-

lution. Given the significant developments in the field of

vision-based deep learning in self-driving modes of trans-

port [2], our system could seamlessly integrate with such

systems with minimal processing power. This enables on-

device feasibility and remote recognition in real-time.

Furthermore, given that the working of this paper focuses

on real-time recognition of bus stops, real world unlabeled

data necessitates the requirement of ground truth for var-

ious bus stop images. Hence, the authors utilize Bayesian

Active Learning strategies by leveraging recent advance-

ments of Bayesian Neural Networks to conveniently model

uncertainties, making it easier to combine various acquisi-

tion functions to learn unlabeled data efficiently, thereby

reducing the load of querying the oracle. Incremental Active

Learning mechanisms employed on-device help overcome

the dynamic nature of real-time bus stop data, and also en-

able scalability of bus stops. The proposed mechanism would

in turn learn the most informative acquired images from

uncertainty estimations, with minimal human intervention.

The motivation for building the inference system is to

simulate the thinking of the human brain, i.e., a way that

imitates or mimics a person’s reaction when inquired about

a particular bus stop. Typically, the individual would look

to their left and right and then make a decision, and when

the person is unsure of the bus stop, he/she would look for

further frames in order to become more confident. This idea

has been encompassed here, wherein the system would not

classify a bus stop if not fully confident with only two im-

ages, which further augments its performance and intelligent

decision making capabilities, in turn making it robust and

efficient. The key contributions of this paper include:

• Proposing a dataset of bus stop images acquired from

cameras placed atop a bus in few select locations in

the city of Chennai, India, and a light-weight model

for the same to perform on-device inference.

• Incorporating Incremental Learning capabilities to en-

able scalability, and dynamically adapt to evolving

surroundings across various bus stops on-device. Data

augmentation techniques to handle class imbalance

for new classes are also studied.

• A study of Bayesian Active Learning using Bayesian

Neural Networks to model uncertainties, by examining

several acquisition functions to acquire labels on-the-

fly and substantially reducing labeling load on oracle.

• An intelligent inference engine which mimics human-

like thinking.

2 RELATEDWORK
Rapid developments have been made in field of image recog-

nition in tandem with intelligent and autonomous vehicles.

However, in the scope of bus stop recognition, very few

systems employ such learning models that are extremely

capable of learning the dynamically evolving surroundings

of bus stop over time.

The system proposed by Pan et al. [13] focuses on an image

based (HOG algorithmwith SVM), however this work is used

for identification of a bus and its number, rather than the bus

stop. The authors from [16] and [9] proposed intelligent bus

stop identification systems using trajectories fromGPS traces

of bus routes in smartphones with impressive efficiencies.

However, the use of GPS in systems increase the network

latency and communication overheads.

In [5], the authors propose a system that recognizes

painted patterns/messages on the road using a Kalman filter

and pattern matching, however this system is computation-

ally expensive. Moreover, road signs might not be a depend-

able means of pinpointing a bus stop in most places. Most

previous works assume that the incoming bus stop data are

labeled previously, which puts forth the requirement to label

real-time data on-the-fly. Active Learning (AL) techniques ef-

fectively identify the most informative data points and query

the oracle (user) for ground truth.

Traditional algorithms in AL [14], [4] are statistically

proven for low-dimensional data, but do not generalize
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(a) 7H - Mogappair (b) Thirumangalam (c) Gurunath (d) Collector Nagar (e) Pari Salai (Night)

Figure 1: Examples of Bus Stops

across deep neural networks, which are inherently high-

dimensional. Approximations using uncertainty sampling

has been an active area of research for many years now,

with efficient Bayesian AL strategies [8] and [12] recently

proposed. These proposed works primarily deal with image

data, and help in identifying the most uncertain images to

be queried by the oracle. Moreover, the authors from [10]

propose Incremental Active Learning for wearable on-device

scenarios, and our proposed work also takes motivation from

the same.

The rest of the paper is organized as follows. We propose

our dataset in Section 3 and our Bayesian model architecture

in Section 4. Section 5 discusses about the various acquisi-

tion functions used for querying the oracle during Bayesian

Active Learning. The baseline efficiencies for the model with

existing and new classes with data augmentation are eluci-

dated in Section 6. This is followed by systematic evaluation

in resource-constrained Incremental Active Learning scenar-

ios in Section 7. A novel intelligent inference mechanism is

presented in Section 8, and Section 9 concludes the paper.

3 DATASET
The dataset primarily consists of images of 8 bus stops from

Chennai, India, of which five are public bus stops and three

are taken inside SSN College of Engineering (SSNCE) over

different days. These images were acquired using two 5 MP

cameras placed in opposite directions on buses during the

day. In addition to these eight bus stops, three bus stops

were captured during night. We propose using two different

classifiers for day and night separately, for which a light

sensor can be used to switch between daylight and night-

time (including dark and overcast times).

For each bus stop during the day, 60 images were acquired

for each side of the bus (left & right), thus, resulting in a total

of 960 images. The classification model was trained with 720

images stratified across each bus stop, and the rest 240 were

used for testing the same. The same amount of images per

bus stop on either sides were acquired for the night. Figure 1

illustrates examples of different bus stops in the dataset. We

focus on the results acquired during the day, and the same

methodology and model can be scaled during night.

Furthermore, the images were resized to 32 × 32 × 3 and

normalized (divided RGB pixel values by 255 for easier model

Figure 2: Bayesian Convolutional Neural Network (CNN) Ar-
chitecture which can model uncertainties

convergence), in order to facilitate hardware-friendly com-

putation with lesser memory overhead.

4 MODEL ARCHITECTURE
Bus-Stop Recognition in real-time requires identification of

discriminative features of the acquired bus stop scenes for

efficient classification. In this paper, we utilize Convolutional

Neural Networks (CNNs) which are powerful mechanisms

for distinctive spatial representations and offer automatic,

effective feature learning capabilities using a series of Convo-

lutional and Pooling layers. The convolutional layers take in

the images in three-dimensions and perform convolutional

operations to the input sequence with various kernels (re-

ceptive fields) and desired amount of filters (feature maps).
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The model consists of two stacked two-layered convo-

lutional network comprising of 8 and 16 filters each, and

receptive field size of 2x2. Each convolutional layer is fol-

lowed by a Batch Normalization and a Max Pooling layer

of size 2x2 each. This is followed by two Fully-Connected

(FC) layers with 16 and 8 neurons with weight regularization

(L2-regularizer with a weight decay constant), and ReLU acti-

vation functions. The Dropout regularization technique [17]

is used between the FC layers with a probability of 0.3, and

finally a Softmax layer is used for calculating the negative

log-likelihood probability estimates. The categorical-cross

entropy loss of the model is minimized using Adam opti-

mizer, with a learning rate of 10
−3
, and implemented using

the TensorFlow framework.

Dropout is used at both train and test times between FC

layers for multiple stochastic forward passes (T=10 in this

paper), to sample the approximate posterior as stated in [7].

Since the weights in Bayesian (Convolutional) Neural Net-
works are probability distributions (Gaussian priors) instead

of point estimates – equivalent to performing dropout for T
iterations, they can efficiently model uncertainty estimates,

which can be used with existing deep acquisition functions

for Active Learning. The model architecture can be observed

from Figure 2.

5 ACQUISITION FUNCTIONS FOR ACTIVE
LEARNING

Given a model M , real-time pool data Dpool , and inputs

x ∈ Dpool , [8] states that an acquisition function a(x ,M)

is a function of x that the Active Learning system uses for

inference of the next query point:

x∗ = arдmaxx ∈Dpoola(x ,M).

Acquisition functions are used in AL to quantify uncer-

tainties and arrive at the most efficient set of data points

to query from Dpool . We examine the following acquisition

functions, whose detailed results are observed in Section 7:

Bayesian Active Learning by Disagreement (BALD). Informa-

tion about model parameters are maximized under the pos-

terior that disagree the most about the outcome [11].

I[y,ω |x ,Dtrain] = H[y |x ,Dtrain] − Ep(ω |Dtrain )

[
H[y |x ,ω]

]
where H[y |x ,ω] is the entropy of y, given model weights ω.

Variation Ratios. Utilizes the Least Confident method for

uncertainty based pool sampling [6].

variation − ratio[x] := 1 −max

y
p(y |x ,Dtrain)

Max Entropy. Predictive entropy is maximized by appropri-

ately chosen pool points. [15].

H[y |x ,Dtrain] := −
∑
c

p(y = c |x ,Dtrain) logp(y = c |x ,Dtrain)

Random Sampling. Equivalent to choosing a random point

from a uniform pool distribution.

6 BASELINE EXPERIMENTS AND RESULTS
Initially, only 7 bus stops are taken into consideration and

called existing classes, while the eighth class (SOMCA bus

stop) is treated as the new unseen bus stop for illustrating

scalability.

Existing Classes
The experiments are performed with 630 train images and

210 test images stratified across all seven classes. This is

generally a one-time training from scratch on server for

establishing the baseline accuracies, and it can be observed

from Figure 3 that the training and testing modules give high

accuracies of ∼97% and ∼96% respectively.

Figure 3: Baseline Train, Test Accuracies vs Epochs

Data Augmentation for New Classes
When a new bus stop is being added to the route, it becomes a

necessity for the model to scale and handle the incoming real-

time data of the new class. The acquired number of images

from the new bus stop is predominantly lesser than that

of existing classes which might result in a class imbalance.

Hence, image augmentation techniques are applied in order

to ensure stratified training across all classes. Techniques

like zoom, shear and rotation by small fractions are utilized

for generating new images [3], which almost resemble the

images acquired from a real-time camera.

Initially, we assume only 4 data points were collected from

either side of the new bus stop. From Figure 4, it can be seen

that the accuracy of the model with just the 8 data points,

retrained from scratch gives an accuracy of 86.25%. However,

the model with new bus stop data augmented to sufficiently

higher images such that no class imbalance exists, achieves

an accuracy of 96.7% which is a ∼10.5% increase in accuracy.



A Vision-based Deep On-Device Intelligent Bus Stop Recognition System UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom

This shows the effectiveness of data augmentation strategies

for new classes, thereby ensuring scalability of bus stops.

Figure 4: With and Without Data Augmentation for New
Class; Test Accuracies vs Epochs

7 INCREMENTAL ACTIVE LEARNING
In order to reduce oracle’s load in labeling the incoming

real-time bus stop images, we perform Bayesian AL using

various acquisition functions as mentioned in Section 5. The

system is deployed on a Raspberry Pi 2 in real-time, and

the stocked model weights are updated on-device in an in-

cremental manner. In the event of there being a change in

scene in an existing bus stop environment, incremental train-

ing will emphasize on learning the most recent and salient

features of that bus stop. Moreover, when a new bus stop

is introduced, the existing model with the newly learned

weights are updated.

Incremental Active Learning on Existing Classes

Figure 5: Acquired Images vs Accuracy on existing classes

The training data with existing 7 classes are split into

pool (Dpool ) and train (Dtrain) (80-20 ratio) for simulating

the Bayesian Incremental Active Learning framework, as an

approximation for real-world data. Dtest is used for evalu-

ation purposes only. The initial accuracy with just 20% of

train data is observed to be 64.28%. After Incremental Active

Learning, various acquisition functions are utilized for eval-

uation of the most informative queries. From Figure 5, we

can infer that Variation Ratios performs the best, achieving

∼88% with just less than 250 data points (less than 50% of

total Dpool ), which is a good trade-off between accuracy and

images actively acquired. Random Sampling has the least

incremental accuracy as expected.

Incremental Active Learning on Augmented Classes
A similar training mechanism (80-20% – Dpool -Dtrain split)

as that of Section 7 is followed for existing and augmented

classes together as well, with Dtest used for evaluation. We

can infer from Figure 6 with an effective trade-off between

accuracy and acquired images that Variation Ratios again

performs the best again, with a classification accuracy of

∼90% with just ∼180 images (∼37% of total Dpool ).

Figure 6: Acquired Images vsAccuracy on augmented classes

After the first acquisition iteration/experiment, the further

incremental updates would typically require substantially

fewer number of actively queried data points from AL to

achieve on-par base classification accuracies of ∼96%.

8 INTELLIGENT INFERENCE
Inference Methodology. The authors propose an intelligent

inference approach that is built on human intuition. In this

approach, the model classifies multiple iterative bus stop

images acquired on demand as opposed to conventional clas-

sification. Let the number of images captured and classified

during inference be n, which is initially set to 2 and capped

at 10 (2 < n < 10). In order to facilitate intelligent decision

making, we propose a confidence factor α – which is the ratio

of mode of predicted classes to n. Just like a human brain,

the system acquires images and classifies them iteratively
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until it can assure a confidence of at least α . Typically, the
threshold for α is set to a majority among the classified (α >
0.5 for 2 images, α ≥ 0.67 for 3 images, and so on). In order to

simulate real-time testing, a classifier is trained on the afore-

mentioned 720 images and tested iteratively on examples at

random from the test data.

The results showcased in Section 7 is a conventional way

of testing with stratified splits during Incremental Active

Learning. On the contrary, the accuracy of the proposed intel-

ligent inference mechanism would steer the model towards

near-100% accuracy, while the bus stop is deemed misclas-

sified only when n > 10. However, when simulated across

numerous trials, the performance of the model did not falter

with the maximum value of n reaching 5.

Inference Engine. The entire deep convolutional network

model is sized 266 kB, thus making it ideal for effective on-

device training and inference. Dropout at inference time is

also used owing to the Bayesian nature of themodel for active

querying using uncertainty-based acquisition functions. The

Incremental Active Learning module can be customized de-

pending on the locality and bus usage characteristics, like pe-

riodic per trip update, per day/night update, etc. The various

metrics and Inference times on Raspberry Pi 2 are observed

in Table 1. Also, many such incremental updates would hap-

pen in real-time, and we can observe that for a total of T=10
dropout iterations, ∼12 seconds were used for querying most

uncertain data points during one such acquisition iteration.

Table 1: Time taken for Execution

Process Computational Time
Inference time 11 ms

Incremental Learning per epoch ∼1.7ms

Dropout iteration ∼1.2ms

9 CONCLUSION AND FUTUREWORK
This paper proposes an intelligent on-device Bus Stop recog-

nition engine which can accurately classify bus stop im-

ages in real-time, thereby eliminating the need for GPS

network and latency overheads. By systematically optimiz-

ing upon different Bayesian Incremental Active Learning

methodologies involving multiple acquisition functions, the

proposed system adapts to the dynamically evolving nature

of bus stops using periodic updates. Variation Ratios acquisi-

tion function is observed to perform the best during Active

Learning, furthermore, data augmentation strategies are in-

troduced for new bus stops to ensure scalability. Hence, a

resource-friendly unified framework for Bus Stop Recog-

nition which facilitates seamless integration with existing

self-driving vehicles with image/video recognition capabil-

ities is proposed in this paper. In future, we aim to create

a unified (master) model across all buses traveling in the

same route with periodic incremental updates from every

bus, which enables information sharing across buses, thereby

making bus stop recognition truly ubiquitous.
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