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ABSTRACT
Unsupervised anomaly detection in time-series data is crucial for
both machine learning research and industrial applications. Over
the past few years, the operational efficiencies of logistics agencies
have decreased because of a lack of understanding on how best to
address potential client requests. However, current anomaly detec-
tion approaches have been inefficient in distinguishing normal and
abnormal behaviors from high dimensional data. In this study, we
aimed to assist decision makers and improve anomaly detection by
proposing a Long Short Term Memory (LSTM) approach with dy-
namic threshold detection. In the proposed methodology, first, data
were processed and inputted into an LSTM network to determine
temporal dependency. Second, a contextualized dynamic threshold
was determined to detect anomalies. To demonstrate the practical-
ity of our model, real operational data were used for evaluation and
our model was shown to more accurately detect anomalies, with
values of 0.836 and 0.842 for precision and recall, respectively.
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1 INTRODUCTION
Unsupervised anomaly detection is important for both machine
learning and industrial application in many areas such as cyber-
security [1] and image processing [21]. In the logistics industries,
the rapid growth of freight transportation in urban areas results
in many challenges for transit and logistics agencies in terms of
controlling costs for each of their business units and creating higher
efficiency routing plans in the logistical area. The vehicle routing
problem (VRP) is the most important topic to support agencies’
decision making in routing planning, including optimizing their
operational cost and traveling distance [18] and satisfying their
operational constraints [10][13][8]. However, when route planning
is launched, it involves utilizing data to support the planning. Con-
sidering only distance and traveling time results in management
addressing only one narrow aspect. The main challenge is that
the current increase in business data complexity and the limits of
data labelling cause ineffectiveness in interpreting data in exist-
ing study approaches. It is necessary to distinguish normal and
abnormal behavior from the planning flow in operation. As a re-
sult, inaccurate identification of abnormal behavior can adversely
impact overall operational performance. For abnormal behavior in
this research context, we address abnormality in the operational
work flow where fleet utilization and task assignment were not
in a regular state or overutilized. Previous studies have continued
to improve detection by adopting innovative anomaly detection
models. However, these are subject to false positive rates during
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the detection process. It is not possible to make estimations using
a density-based approach on time series data because it can miss
anomalies that occurred in the specified limit or are characterized
by temporal dependencies[6]. The real-world data from the system
are usually highly non-stationary and dependent on the current
context. Data being monitored are often heterogeneous, noisy, and
high-dimensional [11]. Recent research has shown that to address
temporal dependencies, one can utilize Long Short Term Memory
(LSTM) for prediction and estimate the error based on the assump-
tion that if the error is high, the data at that point of time is not
dependent on other data points. In addition, a threshold is required
to support the estimation process.

However, an unanswered question remains regarding the ability
of the current anomaly detection model to address data tempo-
ral dependencies and the variety of anomalies in a business area.
Our research question was defined as follows: how can we address
temporally dependent data without losing information to detect
abnormal business operational behaviors? Moreover, how we can
contextualize the anomalies? Also, what is the root cause of the
anomalies? The lack of a solution to bridging the gap in current
study approaches causes a misunderstanding in how best to address
a potential client’s request because we cannot detect an abnormal
pattern if essential information, such as temporal characteristics,
is not considered and the context is not defined. This leads to a
downturn in company profits and operational opportunities. To
be able to support their business, agencies require research into a
more effective data analytical approach to aid in their management
strategies.
Contribution In this study, we adapt and extend the method from
various domains to address and fill the gap in solving the afore-
mentioned issues. This work presents, through the field of logistics
industries, anomaly detection. However, in addition, our proposed
approach can be applied to many other application domains. It
is not specific only to logistics industries which involve anomaly
detection in multivariate time-series. We describe our use of LSTM
to achieve high prediction performance while maintaining model
efficiency and data interpretability throughout the process. Once
the model performs a prediction, we propose a context, dynamic,
and unsupervised threshold, including a weighted average method
for evaluating a series of data. This approach addresses diversity,
non-stationarity, and noise issues associated with automatically
setting thresholds for data streams characterized by varying behav-
iors, such as their context link to their behavior or deviations from
the regular group or the defined thresholds to the approach also
supports identification of the root cause of the anomalies. We then
present experimental results using real-world data derived from a
global positioning system (GPS) probe, logistics agencies’ reports
of operation, and an expert-interview report in an aggregated form.
Finally, we highlight the essential point, improvements, and ob-
servations identified through our experiment and what should be
considered in further research.

This paper is organized as follows. Section 2 focuses on the anomaly
detection method. Section 3 provides a detailed statement of the
problem, its significance, and the motivation driving this research.
Section 4 presents the methods used to conduct data analysis pro-
cessing and an experiment regarding fleet management anomalies

is discussed. The proposed model is also described. Section 5 ex-
plains the factors involved in anomaly detection and a comparative
experiment of fleet management systems. Section 6 summarizes
our findings, draws conclusions based on our research objectives,
and suggests potential improvements to this study.

2 RELATEDWORK
2.1 Anomaly Detection
In our study, we discovered three types of anomalies consisting of
point, contextualized, and collective anomalies. The definition of
each type is as follows. First, for point anomalies, the data point is
an anomaly if it is significantly different from the others, measured
by the Euclidean distance, similarity, and dissimilarity. Second, for
contextualized anomalies, the data point, or sub-sequence, is an
anomaly if it is significantly different from the context rule and
behavior. For example, contextual in terms of time, quarter, date,
and action under the condition of demand, order, and number of
available vehicles. Finally, collective anomalies are a sub-sequence
within a long sequence significantly different from the others. This
study shows that this anomaly can be detected by the sliding win-
dows approach, which calculates the statistical threshold if the data
point differs from others in each defined time window. [15][11]. The
objective when developing an anomaly detection method is to de-
tect unexpected events or behaviors using a probabilistic distance-
(clustering), reconstruction-, domain- (classification), or theory-
based informational approach on available data [12]. To be more
specific, anomalies in the logistics industries for this research con-
text are addressing operational management error where the task
assignments or fleet utilization are not regularly defined and dis-
tributed. The anomalies were influenced by fleet utilization, client
demand, driver, and asset availability. We used historical data to
evaluate the pattern to determine the overall performance of the
agencies’ operation to assist the agencies in their decision making.

2.1.1 Anomaly Detection using Long Short Term Memory (LSTM).
Long Short Term Memory (LSTM) was adopted to determine the
temporal correlation of time series attributes to estimate the current
predictor time. The aim of this approach was to identify collective
anomalies. [11] performed LSTM to detect abnormalities in space-
craft operation. They analyzed the data by adopting a dynamic
threshold with a statistical method for detecting anomaly sequences
which deviate from and exceed the limit. LSTM also was used to
detect anomalies in the time-sequences of computer network usage
by estimating the prediction error threshold calculated from the
relative error, relative error threshold, minimum attack time, and
danger coefficient [4]. However, these approaches can identify the
majority of sequences and point anomalies but also have a high
false positive rate in their detection results.

2.1.2 Anomaly Detection using a Reconstruction-Based Approach.
The reconstruction-based approach assumes that anomalies were
not effectively reconstructed from the low dimensional space. This
approach aims to detect am outlier and rare event data point which
does not conform with other data points. The method used in this
approach was Principle Component Analysis (PCA). However, the
disadvantage of using traditional PCA is that it reduces the data
dimension and the critically important information that is required
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to detect outliers or anomalies is removed. Thus, during recent years,
researchers have adopted an improved method such as Robust PCA
(RPCA) that is less sensitive to noise [3]. In addition, some recent
works have proposed to analyze the reconstruction error from deep
auto-encoders and the experimental results show that it is efficient
in detecting anomalies [5][12][20]. However, the detection is based
on reconstruction error, which covers only one aspect to detect
anomalies. In a further study, the abnormalities did not always have
a high reconstruction error, which means that the data points may
appear with common data points which have a low reconstruction
error [3].

2.1.3 Multi-level Anomaly Detection. From the survey in this re-
search area, multilevel anomaly detection is widely adopted on the
assumption that data have a high dimension and it is not convenient
for clustering based approaches such as Kmean, Support Vector
Machine (SVM), or Gaussian Mixture Model (GMM) to perform
density estimation and anomaly detection. Therefore, a two-step
approach was adopted [6] in which the dimensional reduction was
first conducted and followed by clustering analysis. This approach
has a drawback wherein there is separate learning between the
dimension reduction and clustering. The key information of im-
portance for clustering analysis could be lost during the reduction
operation. Joint learning is also of growing interest which aims to
improve detection accuracy, making the detection more reliable and
improving the computational time by dividing a detection phase
into hierarchical levels and then completing an ensemble prediction.
The model is a combination of an auto-encoder for dimensional
reduction and an ensemble k-nearest neighbor for clustering [17].
Another research study also used auto-encoder as a base model
and performed density-based spatial clustering of applications with
noise (DBSCAN) to perform density estimation [2]. The combina-
tion of supervised and unsupervised learning also has been adopted
to detect Denial of Service (DoS), Probe, and Normal in the hi-
erarchical level. It is a combination of Catsub, K-Point, and the
outliner detection method. [9]. Another approach is the multilevel
hybrid model where a combination between support vector ma-
chine, extreme learning machine, and modified Kmean is used in
the computer network [1]. A combination of neural and decision
tree has been used to detect in a cyber-network. The hybrid and
multilevel model aims to improve detection accuracy and reduce
the false positive rate [16].

However, none of these studies have addressed the perspective
of anomaly detection in logistics research. More specifically, the
anomaly detection approach, which can detect point, contextual-
ized, and collective anomalies in multi-level dimensions, including
identified their root-cause, has not been widely discussed. In addi-
tion, it is essential to aggregate temporal dependencies to support
anomaly detection where anomalies need to be considered in vari-
ous aspects as in a real operation, which presents a challenge. This
challenge motivated us to address this problem; thus, during recent
years, LSTMs have demonstrated that it is possible to learn and
detect temporal dependencies over various domains. In this study,
we propose an unsupervised model to detect anomalies using mul-
tivariate time-series data as an input to LSTM to determine the
temporal dependencies of time-sequence and detect collective and

contextualized abnormalities leveraged from a dynamic threshold
and anomaly contextualization approach.

3 PROBLEM DEFINITION
Logistics agencies have faced a challenge in managing their opera-
tions because of the uncertainty of the demand in the market. Both
business and data analytic problems exist. The business problem is
defined as the lack of understanding how best to address a potential
client’s request leading to a downturn in company profits and oper-
ational opportunities. To be able to support their business, agencies
require research into more effective data analytic approaches to
aid their management strategies. By analyzing historical data from
logistics agencies, it is shown that during 2 years of operation,
agencies held unexpected incident requested consisting of 7% of
the overall work, which appears as a low percentage and also the
number of abnormal behavior seem to be unbalance between reg-
ular behavior. However, if the impact were calculated in terms of
losses, it would demonstrate that the profitability of the logistics
agency operation can be materially impaired. These problems have
been a link to the data analytical problem as an inefficiency to dis-
tinguish between non-anomaly and anomaly data points using the
current detection approach on high-dimensional data. The existing
detection approaches require modification to preserve the essential
information. It has been required to detect data points which are
characterized by a temporal dependency element. The non-linearity
and high variability of the data decrease the current detection ap-
proaches performance. Therefore, in this study, we proposed an
unsupervised anomaly detection model that leverages from the dy-
namic threshold and anomaly contextualization approach to solve
the gap of existing detection. It also addresses the issues intro-
duced at the beginning, which are based on the assumption that
an anomaly that does not have temporal dependencies and rarely
occurs is subject to a high prediction error rates when compared
to that of the other data points. In addition, it is also imbalanced
when compared to the overall dataset and the data contains a high
degree of diversity. This study, therefore, involves the processing
of data as it is collected and utilizes the data to perform analysis
and anomaly detection. All anomalies in this study were defined
as point, contextualized, and collective as described in section 2.
For point anomalies, we can set straightforward single values that
fall within low-density value regions. Collective and contextualized
points were determined by the context, in terms of the day as a con-
text, and the behavior between the request received from the client
was compared to action in fleet management such as the number
of available vehicles in the fleet and incident rate. An example of
anomalies in the logistical area is shown in Figure 1. The figure
on the left shows the abnormalities which independently occurred
from the other attributes and the second is combined (in the yellow
square) and context with thresholds (in the red square) with another
characteristic to define as anomalies. To be more specific, anomalies
in the logistics industries for this research context are addressing
operational management error where the task assignments or fleet
utilization are not regularly defined and distributed. The anomalies
were influenced by fleet utilization, client demand, driver, and asset
availability. We used historical data to evaluate the pattern and
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determine the overall performance of the agencies’ operation in an
effort to assist the agencies’ decision making.

4 DEVELOPMENT OF THE LSTM-BASED
ANOMALY DETECTION MODEL

4.1 Data Collection and Pre-processing
First, data were collected from GPS tracker equipment and agencies’
operational reports. It consists of a GPS probe from sixty trucks with
installed GPS tracker equipment, a client order. The collected data
from these two modules we then divided into four data formats
consisting of an order confirm, vehicle statistic, driver statistic,
and order. These data were subject to feature extraction using a
business intelligence framework. To obtain all necessary features,
first, we performed a data acquisition to extract features and in
preparation for analysis. Then, we loaded the data to store in data
storage. A Power BI was used to determine the data relationships
for measuring the fundamental statistic of each feature and creating
a linkage to other data attributes within various perspectives, as
shown in Figure 3. From the previously described operation, we
obtained the statistics on the number of vehicles used, available
vehicles, drivers, relationship between vehicle and assigned driver
including their orders, and so on, as the form of multivariate time-
series shown in Table 1 and Figure 4.

From Table 1, the definition of import and export are described
as follows:

• Imports are tasks which deliver goods or products from local
agencies to overseas destinations.

• Exports are tasks which deliver goods or products from over-
seas to local destinations.

4.2 Preliminary Experiment on Anomalies
Contextualization

The contextualized anomalies required a context link with a be-
havior [6] for detection. Therefore, the motivation to conduct this
experiment was that the Bayesian network can define the linkage
between data attributes. It is also among the methods in the graph-
ical model used to represent the dependency of the event and the
evidence in the dataset. The model formulation is described in Sec-
tion 4.2.1. The assumption is if the linkage has a low probability,
then that data connection rarely occurs, and thus we can use the
origin and destination of that linkage to be the context and the
threshold to define the anomalies.

4.2.1 Define data attribute dependency using Bayesian Network.
After we obtained the data to prepared for analysis, we then deter-
mined the dependencies and set of rules to contextualize anomalies
from the dataset. Bayesian Network-Based Approaches were used
for anomaly contextualization as in Equation (1):

Pr(e |m) (1)

where e is an event (or evidence for an event) and m is the
model. To determine context of an anomaly, we need to specify the
threshold (t ) as represented in Equation (2):

Pr(e |m) < t → anomalous (2)

For time-series or data that have a sequence of events, a process
to contextualize the anomaly (aggregated)is required. The equation
is modified based on [14] as Equation (3):

1
N

∑
i
Pr(e |m) < t → anomalous (3)

where N is a time-step i and m is the model. If we would like
to determine conflicts within a set of evidence, we use "conflict
measure" [14] to detect possible incoherence in evidence E = {E1 =
e1, ...,Em = em } as in Equation (4):

C(E) = log
Pr(E1 = e1) × ... × Pr(Em = em )

Pr(E)
(4)

After using the Bayesian Network, wewere able to obtain context
and behavior for the defined anomalies. We set it from the low
probability of the linkage. Further discussion is provided in the
results section.

For the context, vehicle (V) usage not in the threshold of a vehi-
cle usage range. We set it up as the thresholdv . It is represented as
Equation (5).

y1 =

{
1, if V , thresholdv
0, otherwise (5)

The condition where the value for the received request (R) exceeds
the threshold of a vehicle usage. We set it up as the thresholdv for
vehicle usage is represented as Equation (6).

y2 =

{
1, if R > thresholdv
0, otherwise (6)

The condition where the number of incidents (I) has increased and
exceed the threshold of an incident is represented as Equation (7).

y3 =

{
1, if I > thresholdI
0, otherwise (7)

If any of these conditions is matched, we consider anomalies to
have occurred during the operational process. From this context, we
group the definition to define possible anomaly and not-anomaly
points as shown in Table 3.

4.3 Proposed model for anomaly detection
The proposed novel unsupervised anomaly detection method was
used to determine and detect a fleet management transaction and
whether it results in prediction error and the defined contextual-
ized threshold represents an operation anomaly from the multivari-
ate time-series data. This study also was motivated by a previous
study’s challenge to address temporal dependency data and reduce
the false positive rate. As mentioned by [11], a single model of
LSTM with dynamic threshold was able to detect the majority of
the anomalies. However, the false positive rate remained high. The
main reason is that the model was efficient in detecting some anom-
alies but other variants remained limited. In other words, anomalies
can be influenced by environmental factors. Thus, the model could
not detect all types of anomalies in the system. We contributed to
the contextualization threshold in the model which increases the
capability of detecting specific anomalies from an upper-level per-
spective in an urban logistics transportation operation in which one
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Figure 1: Example of anomalies held by logistics agencies

Figure 2: Framework of business intelligence

could not only determine a prediction error and statistical threshold,
or use a density-based approach, but could also detect influences
from environmental factors. For example, from the client, operation,
asset, and human resource factors. Moreover, these contexts helped
to identify the root cause of the anomalies in the fundamental step.
The overall proposed model is shows as Figure 5.

4.4 Multivariate time-series prediction using
LSTM

At this stage, we took the data which were prepared in Section 4.1
as inputs. The basic principle behind a recurrent neural network
(RNN) is to leverage the following information in the input to make
a prediction. The LSTM was used to train the sequences of the time-
series data. However, in a traditional neural network, inputs and
outputs are independent of each other. Therefore, when making a
prediction, it is important to know the previous steps. This type of
neural network is termed recurrent because it performs the same
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Figure 3: Data relationship from multi-data sources

Table 1: Data specification of daily reports transformed from a GPS probe and company report

Attribute(s) Example of Data Unit

Date 2/10/2018 -
Number of Available Vehicles 45 Vehicle
Number of Occupied Vehicles 7 Vehicle
Number of Vehicles with No Assigned Driver 8 Vehicle
Number of Vehicles with Back Order Work 0 Vehicle
Number of Vehicles in Maintenance 0 Vehicle
Number of Vehicles with Driver Taking Leave 0 Vehicle
Number of Total Requested from Client 45 Order
Number of Requests Received 45 Order
Number of Orders Cancelled or Postponed (Import) 0 Order
Number of Orders Cancelled or Postponed (Export) 0 Order
Quarter of the Year Q4 -

computation for all elements in a sequence of inputs, and the output
of each element depends, in addition to the current input, on stored
state data. [19]. The core principle is to improve the network by
providing it with explicit memory. These frameworks are equipped
with special hidden units. The resultant behavior is that previous
input can be remembered for a long time. Multivariate time-series
forecasting with LSTM was used to predict the received request
from the client and vehicle availability in the fleet. We evaluated
the model’s root mean squared error (RMSE) and the absolute error
as in Equation (8). The prediction reflected the temporal depen-
dencies based on the assumption that the time sequences where a
high error rate of prediction meant the time-step did not regularly

occur because it did not have influence from the previous time-step
attributes to make the prediction.

e(t ) = |yt − ŷt | (8)

Where et denotes the prediction error of each time-step, yt
denotes a true observation, and ŷt denotes the prediction result
from the input features.

4.5 Contextualize Dynamic Threshold
After the prediction result was obtained. We utilized and modified
the dynamic threshold approached proposed by [11] for use in our
study. The prediction error of each time-step was representative of
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Figure 4: Visualization of collected data

one-dimensional vector errors:

e = [et−h , ..., e(t−ls ), ..., e(t−1), e(t )]

where h is the historical error of the previous time step. The set
of errors e is now smoothed to reduce the spike error generated
from LSTM. Sometimes it was not perfectly predicted when the
data point was in the not-abnormal state as shown in the [11]
experiment. We used the exponentially weighted average (EWMA)
to generate smoother errors where each weight of the data point
was determined from the previous time-step (t − 1). Then, we
obtained the smoothed error:

e = [et−hs , ..., e
(t−ls )
s , ..., e

(t−1)
s , e

(t )
s ]

To evaluate whether values are non-anomaly, we set a threshold
for their smoothed prediction errors. The values corresponding
to smoothed errors above the threshold were classified as anom-
alies. In our study, the proposed thresholds which were defined
as the context from section 4.2 and the smoothed error previously
described were used to fill the gap of specific anomalies where it
required a context of behavior to make a detection. We propose
an unsupervised method without the use of labeled data. First, the
thresholdp (smooth error threshold) was defined as Equation (9).

thresholdp = µ(es ) + zσ (es ) (9)
Where z represents a positive value of standard deviation above

µ(es ) We discover from our experiment that number of z greater
than twowas increasing the detection rate and reducing the number
of positive errors. Next, the threshold for an incident context in each
time step (t) was defined as Equation (10). It was used to determine
the period that contained the number of incidents over the regular
transaction in operation.

thresholdI = µ(i) + zσ (i) (10)
where z represents the positive values of standard deviation

above µ(i). The threshold for the vehicle usage context in each
time step (t) was defined as Equation (11). It was used to determine
the period that contained several vehicle usages over the regular
transaction in operation and for decision a defining an anomaly in
Equations (5), (6), and (7).

thresholdv = µ(v) ± zσ (v) (11)
Finally, we utilized Equations (5), (6), (7) and (9) to determine the

anomaly score by using a weighted average method [7] as Equation
(12).

scorei =

∑n
i=1(yiwi )

n
(12)

where n is the number of contexts for a specific anomaly, w is
the assigned weight for each context (for this study we assigned
one where it was equally important), and y is the decision in each
context represented in Equations (5), (6), and (7). If the score ex-
ceeded the typical score obtained from the regular data point, then
we classified the data point as an anomaly. We also applied a sliding
window approach to make a detection in the series of anomalies
that occurred in the time-sequence. It was based on the assumption
that if the majority of data points in the windows have a scorei
exceeding the average score of the regular data point, then all of
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Figure 5: Demonstration on the flow of data which input into the model, first it is determined the temporal dependencies
and prediction error from LSTM and then evaluate the prediction error and supported context with the proposed contextu-
alize thresholds. Finally, the evaluation results were combined with weight average method and return the final decision for
anomaly detection.

the points were classified as anomalies. In our experiment session,
it was shown how the detection performance impacted the size
of the window. In addition, we conducted an experiment on the
dependencies of the previous data points with the assumption that
previous data points can influence the current data in becoming
anomalies. The percentage of different (d) of scorei and scorei−1
was defined as Equation (13).

di =
|scorei − scorei−1 |

scorei
(13)

where i is the time-step; if di exceeded the average of all sets of di
in the specific windows, then we classified all of the data points
as anomalies. The summary of the procedure is shown in Figure 6.
We first slide the window from the beginning of the series. Then,
we calculated the anomaly score as defined in Equation (12). This
equation was supported by threshold and decision conditions which
were previously described. Then, one can determine the change
between time-step (t) and the previous time-step (t-1). Whether the
values of each factor violate the threshold was assessed and then
an anomaly score was assigned to each data point in the windows.
We repeated the procedure until the end of the time-sequence.

4.5.1 Performance Evaluation. During this stage, we evaluated the
detection capability of our proposed model using an Area Under
the Roc Curve (AUC), precision, and recall. The AUC measures the
entire two-dimensional area under the entire receiver operating
characteristic curve (ROC). The ROC was defined by applying a
different threshold in a comparison between True Positive Rate
(TPR) and False Positive Rate (FPR)). The equations for calculating
TPR and FPR are Equation (16) and Equation (17), respectively.

TPR =
TP

TP + FN
(14)

where TP denotes the number of true positives and FN denotes
the number of false negatives.

FPR =
FP

FP +TN
(15)

where FP denotes the number of false positives and TN denotes
the number of true negatives.
The result is also validated using ground truth data in terms of
its detection accuracy, precision, and recall including a confusion
matrix. The precision and recall evaluation matrices are defined as
Equation (18) and Equation (19, respectively.

Precision =
TP

TP + FP
(16)

where TP denotes the number of true positive and FP denotes
the number of false positives.

Recall =
TP

TP + FN
(17)

where TP denotes the number of true positives and FN denotes
the number of false negatives.

5 RESULT AND DISCUSSION
Given the lack of data labelling from the data set, it is necessary to
define a context for the anomaly in the urban logistics operation.
As in the procedure in Section 4.2, we derived a result using the
Bayesian Network as shown in Table 3.

From the analysis, anomalies in the fleet management system
mainly occur from vehicle issues. The calculation result in section
4.2 demonstrated that the linkage between the vehicle to received
request(Actual delivery) and the incident most likely cause anom-
alies in operation. The results showed that there is a low possibility
to have a regular link and when we calculate Equations (3) and
(4) a high anomaly score occurs, showing that the anomaly scores
were higher than those of other linkages as shown in Table 3. We
conclude that the root cause of the anomalies in urban logistics
transportation mainly occurred from vehicle issues, which led to ab-
normal business behavior to address potential requests from clients
and incidents occurred as a consequence. From this outcome, we
set vehicle usage as a context in each time step and combined it
with behavioral decision in Equations (5), (6) and (7), respectively.
The summaries of context for defined anomalies are shown in Table
4.



Detecting Abnormal Behavior in the Transportation Planning UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom

Figure 6: Demonstration of the sliding window with contextualized dynamic threshold showing that the smoothed error rate
exceeded the threshold in the specific window size which was supported by the number of incidents. It received the requests
as they exceeded a regular setting and the insufficient availability of vehicles in the fleet. In other words, these factors were
the root causes that influenced the anomalies.
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Table 2: Summary of anomaly scores using the Bayesian Network generated from multivariate time-series

Attribute(s) Received req. Incident Request Vehicle Swap Fleet No Driver Maintenance

Received req. 0 1 1 9 2 3 1
Incident 2 2 2 12 2 1 3
Request 1 0 0 0 2 0 1
Vehicle 11 12 3 0 3 4 4
Swap Fleet 2 2 3 1 0 2 2
No Driver 2 2 2 0 2 0 2
Maintenance 1 2 2 0 2 1 0

Table 3: Criteria to Determine Anomalies

Description Status

Received Request(R) and Vehicle (V) not exceed thresholdv and incident not exceed thresholdI normal
Received Request(R) and Vehicle (V) exceed thresholdv and incident exceed thresholdI anomaly
Received Request(R) exceed thresholdv and Vehicle (V) not exceed thresholdv and incident not exceed thresholdI anomaly
Received Request(R) not exceed thresholdv and Vehicle (V) exceed thresholdv and incident exceed thresholdI anomaly

Table 4: Parameter setting for the LSTM model

Model Parameter(s) Values

hidden layer 2
unit in hidden layer 80
sequence length 730
training Iteration 1000
dropout 0.3
batch size 72
optimizer adam
input dimension 12

5.1 Model Construction and Parameter
Evaluation

After we defined the contexts for anomalies, then we constructed an
LSTM model and set up parameters from hyper-parameter tuning
as in Table 5.

5.2 Experimental Result
Next, we input all the data features into the model for training
and testing. We performed the procedures described in Section
4.5 to calculate prediction error and defined a set of thresholds.
In our experiment, we divided it into sub-experiments, where we
detected only point , contextualized, and collective anomalies. The
last was combined with both types of anomalies. First, table shows
the experiment on point and collective anomaly detection when
applying only a prediction error threshold and sliding windows
approach.

From the result, it shows that when the window size increased,
the AUC also increased. However, the values of the AUC were not
significantly high, a consequence of the false positive and true pos-
itive rate. This shows that the data points contained dependencies
to change the previous time-step as the estimate in Equation (13)

Table 5: Experiment 1 on the changes between each time
window and the dynamic threshold

Window size AUC Precision Recall FPR

1 0.572 0.714 0.189 0.047
2 0.573 0.673 0.209 0.063
3 0.582 0.673 0.234 0.070
4 0.588 0.667 0.253 0.078
5 0.588 0.646 0.266 0.090
6 0.590 0.638 0.278 0.098
7 0.588 0.646 0.266 0.090
8 0.597 0.632 0.304 0.109
9 0.593 0.615 0.304 0.117
10 0.593 0.615 0.304 0.117

to influence the status of the current time-step data point in the
window for defining anomalies denoted by the anomaly score in
Equation (12). The anomaly score was based on a threshold defined
earlier in section 4.5 and was combined as anomaly scenarios as
in Table 3. However, this also causes a high false positive where
it detected regular data points as anomalies as the window size
increased. We chose windows with a size equal to 1 as our result in
this experiment where there is a high chance to correctly predict
versus other window sizes. From this experiment, we set an assump-
tion as it required a context and estimated the different changes in
which tricked the next time step to be anomalous to support the
detection. We then completed the next experiment only specifying
the context and did not consider the previous time-step values, as
shown in Table 6.

Table 5 shows that our set of data points does not contain the
change dependencies of time-step. Thus, in this experiment, we
then changed the model to the context of behaviors that described
the decision condition and shown in Table 3. This was supported
by the threshold in section 4.5 and the anomaly score in Equation
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Table 6: Experiment 2 on the contextualized threshold of
each time window

Window size AUC Precision Recall FPR

1 0.504 0.88 0.696 0.059
2 0.689 0.619 0.608 0.230
3 0.658 0.549 0.639 0.324
4 0.597 0.471 0.627 0.434
5 0.563 0.437 0.614 0.488
6 0.534 0.409 0.614 0.547
7 0.525 0.402 0.633 0.582
8 0.526 0.403 0.595 0.543
9 0.522 0.399 0.614 0.570
10 0.504 0.385 0.614 0.605

Table 7: Experiment 3 on the contextualized threshold com-
bination to change between each time-step and the dynamic
threshold

Window size AUC Precision Recall FPR

1 0.799 0.831 0.684 0.086
2 0.728 0.633 0.709 0.254
3 0.730 0.599 0.785 0.324
4 0.691 0.556 0.753 0.371
5 0.690 0.553 0.759 0.379
6 0.697 0.554 0.785 0.391
7 0.677 0.567 0.671 0.316
8 0.684 0.571 0.684 0.316
9 0.680 0.561 0.696 0.336
10 0.670 0.551 0.684 0.344

(12). However, the result in Table 6 demonstrates that it did not
significantly change except in a window size equal to 1 where the
precision increased to 0.88 and the recall to 0.696. The optimal
window size for this experiment was 1 because it had a high rate of
precision and recall. Also, the FPR was the lowest. Unfortunately,
the AUC result decreased by 4 % on average from the previous
experiment. This experiment supported our assumption that our
data contained contextualization or anomalies, which required a
specific context to support the detection. This assumption led to
our experiments in which we combined the dependencies between
time-step with the context for data point behavior as shown in
Table 7.

From the result, combining these approaches improved the AUC
by 17% versus the first experiment and 20% for the second experi-
ment. The experiments also show that the window size of 1 was
suitable for detecting anomalies and it had the highest precision
and AUC compared to that of the other window sizes. It also shows
that if the window size increases, then it degrades the detection
performance because each data point does not have to depend or
support each other where the approach takes the mean anomaly
score within the window to define the threshold. If the majority of
the data points in the window exceeded the threshold, then they

Table 8: Experiment 4 on the contextualized threshold in
combination with the dynamic threshold

Window size AUC Precision Recall FPR

1 0.870 0.836 0.842 0.102
2 0.754 0.647 0.766 0.258
3 0.713 0.646 0.646 0.219
4 0.692 0.574 0.709 0.324
5 0.693 0.583 0.690 0.305
6 0.698 0.614 0.646 0.25
7 0.699 0.587 0.703 0.305
8 0.693 0.592 0.671 0.285
9 0.688 0.596 0.646 0.270
10 0.672 0.561 0.665 0.320

were classified as anomalies; otherwise, they were classified as reg-
ular transactions. However, the recall still needs to be improved and
was a sign that the data point was not influenced by the previous
time-series. Therefore, we then performed an experiment where
we removed the dependencies of time-step (t) and time-step (t-1),
using Equation (13) from our model.

The results are shown in Table 8. This proved of our assump-
tion that the data point of the previous time-step did not have any
influence on the current prediction time-step where the precision
and recall were a significant improvement over the previous exper-
iment. We discovered that as the size of the window was set to 1,
it had the most efficient detection when compared to that of the
other window sizes. This means that each data point independently
occurred and could be considered as point not collective anomalies
in this case. The suggested improvement of this model would be
the factors to be considered. Anomalies could originate from var-
ious perspectives as our study focused on operational anomalies.
Thus, in our future work, we would expand the capability to detect
anomalies in more aspects and discover the root cause that influ-
ences anomaly occurrence during the process. In addition, the data
points that appear with regular data points are also important and
comprise one of the limitations of this study. The second limitation
is the reliability, as the statistic thresholds are not always detecting
abnormal patterns, if the value does not exceed the threshold. In
another case, sometimes a false positive detection is caused when
the value exceeds the threshold but it was not influenced to occur
as an anomaly. Combining multi-factors together to evaluate the
operational behavior was required. In our future work, we suggest
combining the LSTM-contextualized dynamic threshold approach
with the multi-level-density-based approach to fill the gap of this
limitation and increase the model reliability. We can leverage the
benefit of distance and statistical approaches together to improve
the detection. Our assumption is that anomalies would not always
result in a high prediction error and also occur as regular data points.
This is the reason why the study was so significant, necessary, and
comprehensive to find a feasible solution.
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6 CONCLUSION AND FUTUREWORK
This paper presents and defines an essential challenge in detecting
abnormal behavior in a fleet optimization process which lever-
ages the benefits from innovative anomaly detection approaches.
We demonstrated that the LSTM approach was suitable to predict
operational management values. While addressing the challenge
involved and the remaining research question associated with unla-
beled multidimensional datasets, and their interpretability to detect
anomalies from non-stationary data series with too many anom-
aly scenarios in urban logistics transportation, we also proposed
a novel contextualization with dynamic threshold approach that
does not rely on any labels that limit real-world data sources. The
capability of this approach extended to detecting anomalies with
multi-dimensional factors and identifying their root causes. We
discovered that our data do not contain any dependencies between
time-step; furthermore, a specific context was required to detect
anomalies as our last experiment showed that the AUC, precision,
and recall rate significantly increased to 0.870, 0.836, and 0.842
respectively. The essential factors for improvement and further
evaluation have also been identified as we look to expand the ca-
pabilities of the proposed approach and implement its framework
not only to logistical areas but for all areas that involve series or
streaming of data to support and enable more reliable and efficient
decision making.
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